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Understanding Electric Vehicle Ownership Using Data 

Fusion and Spatial Modeling 
 

 

Abstract 

The global shift toward electric vehicles (EVs) for climate sustainability lacks comprehensive insights 

into the impact of the built environment on EV ownership, especially in varying spatial contexts. This 

study, focusing on New York State, integrates data fusion techniques across diverse datasets to examine 

the influence of socioeconomic and built environmental factors on EV ownership. The utilization of 

spatial regression models reveals consistent coefficient values, highlighting the robustness of the results, 

with the Spatial Lag model better at capturing spatial autocorrelation. Results underscore the significance 

of charging stations within a 10-mile radius, indicative of a preference for convenient charging options 

influencing EV ownership decisions. Factors like higher education levels, lower rental populations, and 

concentrations of older population align with increased EV ownership. Utilizing publicly available data 

offers a more accessible avenue for understanding EV ownership across regions, complementing 

traditional survey approaches.  
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1. Introduction 

The global trend towards the adoption of electric vehicles (EVs) has gained significant momentum, 

primarily driven by the need to combat climate change and reduce reliance on fossil fuels. Acquiring a 

comprehensive understanding of the patterns observed in EV ownership can effectively inform the 

formulation of more people-centric policies and the design of infrastructure aimed at bolstering the 

widespread uptake of EVs.   

Research has shown that land use design can impact climate change mitigation behavior and 

potentially influence EV purchases (Ford et al., 2018). However, the influence of the built environment 

on EV ownership has not received adequate attention, and the spatial heterogeneity of this impact remains 

less explored. Some studies have investigated the impact of the built environment on EV ownership and 

found that factors such as charger density and road priority, access to restricted traffic zones, positively 

correlate with the market share of EVs (Wang et al., 2019; R. Zhang et al., 2021). However, a thorough 

exploration of whether these factors exhibit regional variations is lacking, underscoring the necessity for 

further research that employs more comprehensive spatial modeling techniques. 

Ignoring these regional differences could obscure the true motivations or barriers behind EV 

ownership. Several studies have found that EV charging stations accelerate EV adoption (Gehrke & 

Reardon, 2022; Sathaye & Kelley, 2013). Nevertheless, they further raise the question of whether 

proliferating charging infrastructure universally would truly augment EV ownership. A proper charging 

network eases EV owner concerns, raising ownership, yet sufficient stations may await more users. 

Uncertainty exists on if more charging infrastructure can lead to high utilization (Mastoi et al., 2022). It is 

possible that the infrastructure would mainly benefit existing EV owners and have limited impact in 

regions with low EV ownership. Therefore, conducting a more nuanced analysis of factors, including 

their geographical impact, is crucial for developing effective strategies to promote EV uptake in specific 

regions. 

This study endeavors to address the existing research gap by examining the influence of various 

socioeconomic and built environmental factors on the ownership of EVs, utilizing publicly available data. 

Currently, stated preference surveys have been widely utilized to understand EV ownership (Jia & Chen, 

2021; Massiani, 2014). However, survey approach is less cost-effective when it comes to comprehending 

the impact of various factors on a larger scale. In response to this challenge, we adopted a data fusion 

strategy, integrating multiple publicly available datasets, including American Community Survey 

conducted by US Census Bureau and Smart Location Database published by US Environmental 

Protection Agency (US Census Bureau, 2021; US Environmental Protection Agency, 2021). By analyzing 

diverse datasets, we aim to explore the relationships between social and built environment factors and EV 

ownership.  

The findings reported in this study could be used in the formulation of policies and the design of 

infrastructure aimed at fostering EV ownership. By identifying the socioeconomics and built environment 

factors that contribute to higher levels of EV ownership and understanding how these relationships vary 

across different geographical areas, policymakers could tailor promotion strategies and/or infrastructure 

placement for EV based on the specific needs and characteristics of each region.  

 

2. Literature Review 

2.1 Influencing factors of EV ownership 

The literature on factors influencing EV ownership identifies four key domains: demographic, contextual, 

built environment, and psychological (Gürcan, 2018; Pan et al., 2023; Pevec et al., 2020; Simsekoglu, 

2018). Comprehensive reviews have been conducted (Corradi et al., 2023; Singh et al., 2020).  

2.1.1 Demographic factors 
Attention has been devoted to understanding the impact of demographic variables on EV ownership in the 

last two decades. Factors such as gender, age, education, occupation, and travel patterns have been 
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extensively studied (e.g., Egbue et al., 2017; Javid & Nejat, 2017). Findings indicate that adults, mature 

individuals, the middle-aged or higher, those with higher education, and professionally employed 

individuals exhibit a strong inclination towards adopting EVs (Bjerkan et al., 2016; Farkas et al., 2018; 

Plötz et al., 2014). Furthermore, studies have explored the interplay between income and EV purchase 

costs, as well as the impact of fuel expenses (Parker et al., 2021; Vega-Perkins et al., 2023). Lower-

income demographics exhibit greater sensitivity to both purchase costs and potential fuel savings 

compared to their higher-income counterparts (Axsen et al., 2015; Hackbarth & Madlener, 2016; Jia & 

Chen, 2021).  

 

2.1.2 Psychological factors 
Various psychological factors significantly shape consumers' attitudes towards EVs, including 

environmental concern, consumer innovativeness, range anxiety, neighborhood effects, motives for car 

use, and self-assessed knowledge of EVs (Chu et al., 2019; Featherman et al., 2021; Sovacool, 2017; Xia 

et al., 2022). Among these, environmental concern emerges as the most extensively researched 

determinant of EV adoption (Austmann & Vigne, 2021; Bai et al., 2020; H. He et al., 2021). Data often 

collected through surveys and choice models are employed in understanding these factors, while several 

psychological theories, such as the Unified Theory of Acceptance and Use of Technology (I & II), Theory 

of Planned Behavior, Technology Acceptance Model, and Innovation Diffusion Theory, provide 

conceptual frameworks for modeling EV ownership (Ajzen, 1991; Davis, 1985, 1989; Rogers, 2003; 

Venkatesh et al., 2003, 2012). Leveraging these theories enhances the clarity of data collection paths and 

improves the interpretability of results (Haustein & Jensen, 2018; Sovacool, 2017).  

 

2.1.3 Contextual factors 
Studies of contextual factors, encompassing policy and marketing strategies, have underscored the 

substantial impact of government policy incentives, including preferential tax treatments, exemptions 

from tolls and parking charges, driving privileges, reduced acquisition and value-added taxes, charging 

infrastructure incentives, electricity subsidies, bus lane access, road tax exemptions, and fossil fuel taxes, 

on consumers' purchasing intentions (Lévay et al., 2017; Ouyang et al., 2021; Renaud-Blondeau et al., 

2023). Geographical variations have also been explored (Habich-Sobiegalla et al., 2018; van der Steen et 

al., 2015; Zimm, 2021). For instance, one study compared early adopter characteristics in China and 

South Korea (Chu et al., 2019). The research revealed that environmental concern played a pivotal role 

for Chinese early majority adopters, while Korean early adopters were significantly influenced by lower 

fuel costs and government subsidies.  

 

2.1.4 Built environment factors 
While sociodemographic factors have garnered more attention, the literature has comparatively given 

relatively less focus to the impact of built environment characteristics on EV ownership. Nonetheless, 

studies have demonstrated that the design of compact, walkable neighborhoods can stimulate active travel 

and the utilization of shared mobility options (Wali et al., 2021). Additionally, land use design has been 

found to support climate change mitigation efforts (Ford et al., 2018). By strategically designing spaces, 

such as implementing mixed-use developments and multimodal facilities, urban planners can complement 

EV adoption by providing alternative transportation modes for shorter trips. Some studies have analyzed 

spatial characteristics and their influence on EV ownership, considering factors such as fuel economy and 

the cost of EVs (Bansal et al., 2015; Zhuge et al., 2020). However, built environment factors, such as 

infrastructure and transit-related aspects, have not been adequately explored. A few studies have focused 

on the development of parking and charging locations for EV owners (Chen et al., 2013; J. Li et al., 

2018). However, many of these studies primarily concentrated on improving system efficiency from the 

supply side rather than specifically addressing user-oriented improvements.  
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2.2 EV ownership modeling approaches 

Numerous researchers have employed discrete choice models, often at an individual or household level, to 

delve into various vehicle ownership decisions. Various choice models, including logit, mixed logit, and 

probit, have been utilized (Bailey et al., 2015; S. Y. He, Sun, et al., 2022; Javid & Nejat, 2017; Jia & 

Chen, 2021). These models often use binary or Likert scales to express ownership or the inclination to 

own an EV. At their core is the assumption that travelers aim to maximize their utility (Goulias, 2002). 

The logit model, widely adopted, assumes an Independent, Identically Distributed extreme value error 

term with a logistic distribution. It produces outcomes similar to probit regression, which employs a 

standard normal distribution for the error term (Hsiao, 1992). To overcome the limitations of standard 

logit, mixed logit was proposed, allowing for people’s random preference (Train, 2009).  

In the realm of understanding behavioral patterns, survey data has traditionally taken center stage, 

yet the potential of public datasets remains noteworthy. Several studies have dipped into these datasets, 

often characterized by broader geographical coverage, particularly in applications related to strategic 

planning for EV infrastructure (S. Y. He, Kuo, et al., 2022; G. Li et al., 2022). Researchers have also 

utilized public datasets to explore factors like land use density and socioeconomic variables impacting 

both EV and conventional vehicle ownership. Spatial models, such as Spatial Lag and Spatial Error 

models, have been applied to analyze these datasets (Chen et al., 2015; X. Liu et al., 2017). With the 

emergence of data collection initiatives, particularly those focused on public charging stations, there is an 

opportunity to further investigate charging-related influences and explore new dimensions in the spatial 

analysis of EV ownership. 

 

2.3 Summary of research gaps and contributions  

The development of discrete choice models to examine this relationship is hindered by challenges in 

scalability to broader regions. Specifically, grasping how relationships derived from these models apply 

to different regions without additional survey efforts might pose challenges. This prompts the question: 

beyond choice models, what alternative methods exist to explore this relationship? Additionally, how do 

these influences vary across regions, and is there spatial dependency on EV ownership?  

This study seeks to overcome these challenges by leveraging various public data sources to 

evaluate the impact of socioeconomic and built environment factors on EV ownership on a relatively 

large scale, specifically all ZIP Code areas within a state. The primary goal is to evaluate the feasibility of 

employing public data sources for investigating this relationship. To accomplish this, we employ both 

linear and various spatial regression models, seeking to gauge the consistency of the modeling outcomes. 

The agreement among the results from these models would affirm the reliability of the relationship 

between built environment factors and EV ownership identified in the data, implying that public datasets 

could serve as valuable tools for examining the influencing factors of EV ownership. 

Our contribution lies in demonstrating that a spatial data processing and modeling framework 

utilizing data sources such as Census data and network attributes could help evaluate the impact of 

socioeconomic and built environment factors on EV ownership. This serves as a proof-of-concept for 

employing multi-source public data in large-scale EV ownership modeling. Importantly, this framework 

can offer a practical and complementary approach for public agencies to utilize readily available public 

data, augmenting traditional survey methods, to understand ways to promote EV ownership.  

 

 

3. Materials and Methodology 

3.1 Data Sources 

This study utilized five publicly available datasets to conduct a comprehensive analysis on EV ownership. 

Specifically, the datasets were EValuateNY, Smart Location Database (SLD), Alternative Fuels Data 

Center (AFDC), American Community Survey (ACS), and Center for Neighborhood Technology (CNT). 
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3.1.1 EValuateNY 
The first dataset, EValuateNY (NYSERDA, 2023), played a crucial role as it provided the necessary 

information regarding the target variable that is the EV ownership in New York State at the 5-digit ZIP 

Code Tabulation Area (ZCTA5) level. In EValuateNY, the EV ownership rate was quantified by 

calculating the number of electric vehicles registered per 1,000 individuals based on their home location 

as an ownership indicator. This metric served as a key indicator to assess the extent of electric vehicle 

adoption across different regions within New York State. Note that the data obtained from EValuateNY 

were used up to December 2021. Figure 1 illustrates the distribution of EV ownership, with the ZCTA5 

zones displayed in white denoting areas without any EV registrations. Given the prevalence of relatively 

low EV ownership in several regions, we performed a Box-Cox transformation on the target variable. To 

tackle the challenge of geographical units with zero EV ownership, we mitigated this by adding one to 

their values. 

 

 
Figure 1. Distribution of EV ownership in New York State by December 2021 (Source: EValuateNY) 

3.1.2 Smart Location Database (SLD) 
In order to select the attributes related to the built environment, we adopted the selection criteria proposed 

by Ewing and Cervero (Ewing & Cervero, 2010). This criteria extends from the three core dimensions, or 

“3 Ds,” of the built environment: density, diversity, and design (Cervero & Kockelman, 1997). The "five 

Ds" include density, design, diversity, distance to transit, and destination accessibility. Additionally, we 

considered accessibility to charging stations as another built environment attribute that could potentially 

influence EV ownership (S. Y. He, Sun, et al., 2022). The reason for utilizing this criteria lies in its 

comprehensive coverage of factors describing the built environment. Existing literature has demonstrated 

correlations between factors under these categories, such as residential density, urban classification, and 

network density, with travel behavior (Bhat et al., 2009; Ding et al., 2021; Saelens & Handy, 2008). This 

criteria can help us to encompass a broad range of built environment factors, providing a nuanced 

understanding of their potential impact on EV ownership. 
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To obtain the built environment data, we utilized the Environmental Protection Agency's (EPA) 

SLD. The built environment features from SLD were derived from several datasets, such as the 2018 ACS 

(e.g., vehicle ownership and population), 2018 HERE Maps, and 2020 General Transit Feed Specification 

(e.g., transit stops). These datasets summarize over 80 attributes for every Census Block Group (CBG) in 

the United States.   

 

3.1.3 Alternative Fuels Data Center (AFDC) 
Another data source used is the AFDC, which provides the locations of EV charging stations across the 

United States (Alternative Fuels Data Center, 2023). Specifically, for this study, we obtained the locations 

of electric charging stations by ZCTA5 that were operational by the end of 2021. The geographic 

distribution of the EV charging stations is visually represented in Figure 2. In summary, the built 

environment features, extracted from both the SLD and AFDC datasets, are outlined in Table 1. 

 
Figure 2. Distribution of EV charging stations in New York State in 2021 (Source: AFDC) 

Table 1. Built-environment attributes explored in this study 

Dimensions Description Variables Unit Sources 

Density 

 

 

 
 

The variables of 

interest per unit of 

area 

 

 
 

Population density People per acre SLD 

Residential density Household units per 

acre 

SLD 

Employment density Jobs per acre SLD 

Retail employment density Jobs per acre SLD 

Office employment density Jobs per acre SLD 

Design 
 

The characteristics of 

the street network 

inside an area 
 

Low speed network density (i.e., 

miles of low-speed road 

segments (e.g., road segments 

having speeds between 31 and 

Miles of road 

segments per square 

mile 

SLD 
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40 mph) based on HERE speed 

category per square mile) 

High speed network density (i.e., 

miles of high-speed road 

segments (e.g., road segments 

having speeds are 55 mph or 

higher) based on HERE speed 

category per square mile) 

Miles of links per 

square mile 

SLD 

Diversity 
 

The number of 

different land uses in a 

fixed area and the 

represented degree 
 

Employment entropy (i.e., the 

diversity of retail, office, 

industrial, service, and 

entertainment jobs) 

No unit SLD 

Employment and household 

entropy 

No unit SLD 

Distance to 

transit 
 

The level of transit 

service at the 

residences or 

workplaces 
 

Distance to nearest transit stop 

(from the population-weighted 

centroid) 

Meters SLD 

Transit frequency Transit per hour per 

square mile 

SLD 

Destination 

accessibility 
 

Ease of access to a 

certain location 
 

Number of jobs within 45 

minutes transit travel time 

Jobs SLD 

Number of jobs within 45 

minutes auto travel time 

Jobs SLD 

Number of charging stations Charging stations 

within a ZCTA5 area 

AFDC 

Charging stations 

within 5, 10, 25, 50, 

75, and 100 miles 

from the ZCTA5 

centroid 

AFDC 

(derived) 

 

3.1.4 American Community Survey (ACS) 
Regarding socioeconomic attributes, we first explored ACS data. The ACS is an annual nationwide 

survey designed to provide reliable and timely social, economic, housing, and demographic data for 

various geographical entities. From the ACS, we gathered variables identified in the literature as 

potentially influential on EV ownership, such as the proportion of older populations (i.e., aged 65+), 

education level, gender, the proportion of rental housing, and the proportion of White population. In 

particular, we utilized the ACS 5-year estimate, spanning the period from 2017 to 2021. 

 

3.1.5 Center for Neighborhood Technology (CNT) 
The latest CNT data used in this study was derived from the ACS and the Longitudinal Employer-

Household Dynamics data in 2019 (Center for Neighborhood Technology, 2022). Specifically, this study 

utilized the CNT’s Housing + Transportation (H+T) index, which incorporates two main components: 

home burden and transportation burden. The home burden reflects the proportion of housing costs in 

relation to household income, while the transportation burden reflects the proportion of transportation 

costs in relation to household income. This comprehensive dataset has gained widespread adoption among 

transportation planning agencies, facilitating the identification of suitable locations for development 

initiatives, such as investments in new transit systems or the construction of affordable housing (M. 

Zhang, 2022). Conventional metrics such as median income from the ACS might possess limitations in 

fully capturing the disposable income disparities across multiple regions within New York State. In 

contrast, the H+T index offers a more comprehensive assessment of the relative affordability of distinct 

places. A summary of these attributes explored in this study is provided in Table 2. 
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Table 2. Socioeconomic attributes explored in this study 

Variable Description Source Unit 

% Older  The proportion of populations age 65+ ACS ZCTA5 

% White 
The proportion of populations that are 

White 
ACS ZCTA5 

% Rent The proportion of populations that rent ACS ZCTA5 

% Bachelor 
The proportion of populations with 

bachelor’s degree of higher 
ACS ZCTA5 

% Zero-vehicle household 
The proportion of household with zero 

vehicle 
ACS ZCTA5 

Median Income Household annual median income  ACS ZCTA5 

Home burden The proportion of home cost on income CNT Census Tract 

Transportation burden 
The proportion of transportation cost on 

income 
CNT Census Tract 

 

3.2 Spatial Lag Model, Spatial Error Model, and Geographically Weighted Regression  

In this study, we utilize three widely used spatial regression models, which are the Spatial Lag model, the 

Spatial Error model, and the Geographically Weighted Regression (GWR) model. 

In a Spatial Lag model, the formulation is given by Equation 1: 

𝑦𝑖 = 𝛽0 + 𝑥𝑖𝛽 + 𝜌𝑊𝑖𝑦𝑖 + 𝜀𝑖 

 

Equation 1 

Where 𝑦𝑖 is the 𝑖𝑡ℎ ZCTA5 location of the target variable, which in this context is EV ownership 

measured by electric vehicles per 1,000 people. The x variables denote the explanatory variables, 

encompassing built environment and socioeconomic factors. 𝛽0 is the estimated coefficient of the 

intercept, 𝛽 represent the estimated coefficients of the independent variables 𝑥, 𝜌 signifies the spatial lag 

parameter, 𝑊𝑖 is the spatial weight vector, and 𝜀 denotes the vector of error terms.  

A Spatial Error model is specified as Equation 2: 

𝑦𝑖 = 𝛽0 + 𝑥𝑖𝛽 + 𝑢𝑖, 𝑢𝑖 =  𝜌𝑊𝑖𝑢𝑖 + 𝜀𝑖 

 

Equation 2 

Comparing these two models reveals some similarities, but there are distinctions worth noting. In 

Spatial Lag models, spatial autocorrelation is modeled by a linear relation between the response variable 

𝑦𝑖 and the associated spatially lagged variable 𝑊𝑖𝑦𝑖. On the other hand, Spatial Error models incorporate 

spatial autocorrelation through an error term 𝑢𝑖 and the associated spatially lagged error term 𝑊𝑖𝑢𝑖.  

A significant spatial lag term may indicate strong spatial dependence, suggesting that EV 

ownership in the neighborhood could influence the EV ownership in the ZCTA5 under consideration. A 

significant spatial error term suggests spatial autocorrelation in errors, potentially due to omitted key 

explanatory variables. Both of these regression types are considered "global" because their coefficient 

estimates exhibit spatial stationarity, allowing a single model to be applied uniformly across different 

areas of interest.  

Third, the study adopts the Geographically Weighted Regression (GWR) model. Previous 

research indicates that GWR sometimes offers improved model fit compared to traditional "global" 

regression, assuming relationships are constant over space (Fotheringham, Brunsdon, and Charlton 2002). 

However, the extent to which this model can effectively explain spatial effects is not yet definitively 

established, as heightened model fit may also suggest overfitting. GWR introduces local regression, 

enabling coefficients to vary at each observation. The GWR model extends the conventional Ordinary 

Least Square (OLS) model by incorporating a geographical location parameter, expressed as Equation 3: 
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𝑦𝑖 = 𝛽𝑖0 + ∑ 𝛽𝑖𝑘𝑋𝑖𝑘 + 𝜀𝑖

𝑝

𝑘=1

, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝑛 Equation 3 

Here, p denotes the number of independent variables. The distinction of GWR from global 

models lies in the spatially varying coefficient 𝛽𝑖𝑘, representing the coefficient t of 𝑥𝑘 at ZCTA5 location 

i.  

In the context of spatial lag and spatial error models, our study employed the widely used Queen 

contiguity weight matrix (Fotheringham & Rogerson, 2008; Kasu & Chi, 2019; Tong et al., 2013). This 

matrix remains constant across all observations and is binary in nature, signifying neighbors based on 

shared borders or edges. Specifically, for each pair of observations, the entry in the weight matrix is set to 

1 if they share a common boundary, and 0 otherwise. The Queen contiguity weight matrix identifies 

neighbors by virtue of entities sharing a border or a point. It characterizes a global spatial relationship 

without accounting for local variations. On the other hand, GWR takes a different approach. Instead of 

relying on a binary weight matrix as seen in Spatial Lag and Spatial Error models, GWR employs a 

continuous and smoothly decaying weights matrix with distance that adapts locally for each observation 

(Aghayari et al., 2017; Charlton & Fotheringham, 2009; Runhua Xiao et al., 2022). This distinction 

allows GWR to capture spatially varying coefficients, with the weight matrix changing dynamically 

across locations.  

Regarding model assumptions, all three models align with the generalized linear regression 

assumptions, including linearity, independence of explanatory variables, homoscedasticity (constant 

variance of errors), and the assumption of normality for errors. Concerning spatial dependence, the 

Spatial Lag model assumes spatial lag dependence in the response variable. The Spatial Error model 

assumes spatial autocorrelation in errors. Both Spatial Lag model and Spatial Error model assume a 

constant spatial relationship for all locations. They provide a global measure of spatial dependence. 

Meanwhile, GWR assumes spatially varying coefficients for each explanatory variable.  

 

4. Research Design 
4.1 Data processing   

The target variable was obtained based on the geographical classification of ZIP Codes. The US Census 

Bureau states that, in most cases, the ZCTA code corresponds to the ZIP Code for a given area (US 

Census Bureau, 2022). Consequently, for the sake of simplicity, ZIP Code was directly assumed to be 

equivalent to the ZCTA5 unit. Subsequently, the remaining variables used in the study were converted 

into the ZCTA5 geographical units. However, it is important to acknowledge a potential limitation 

stemming from the merging of different geographic hierarchies. The ZCTA5 unit can extend beyond the 

boundaries of a Census Tract, leading to misclassification bias in the study’s results. Nonetheless, in order 

to maintain coherence with the target variable, the independent variables measured at the Census Tract 

level were transformed into the ZCTA5 units.  

This conversion from Census Tract to ZCTA5 employed the ZCTA-Census Tract crosswalk data 

(US Census Bureau, 2010). The crosswalk data provides, for each ZCTA5, the percentage of populations 

from a Census Tract overlapped onto the ZCTA5. Each Census Tract was assigned to the ZCTA5 

containing the highest percentage of its population. This approach addresses limitations associated with 

distance-based matching methods, often overlooking population mismatches (Ong & Miller, 2005). 

Similar population-weighted techniques for matching ZCTA5 with Census Tracts or counties have been 

employed in other spatial analyses (Bor et al., 2023; Daly et al., 2018).  

To establish the lowest population weight percentage allowing a ZCTA5 to be matched to a 

Census Tract, a sensitivity analysis was conducted. As depicted in Figure 3, the number of successfully 

matched ZCTA5 decreases as the population weight percentage increases, following an almost linear 

relationship. It is important to note that there is no universally correct value for this parameter. To 

maintain a certain sample size, the chosen value was determined as 20%. 
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Figure 3. The relationship between population weight percentage and number of successfully matched 

ZCTA5 

 

4.2 Descriptive analysis  

A total of 1422 ZCTA5 units' data were included in the final dataset for modeling, following the 

exclusion of regions with missing values for either the target or independent variables. Note that a 

relatively larger proportion of geographical units were excluded in the Long Island area. To assess 

multicollinearity, a variance inflation factor (VIF) analysis was performed. The VIF serves to quantify the 

potential linear dependence among variables, with a VIF value exceeding 10 indicating the presence of 

multicollinearity.  

To maintain uniformity in interpretation, all four models employ an identical set of variables. The 

rationale behind excluding other attributes is their lack of significance in any of the models. The finalized 

model exclusively incorporates variables outlined in Table 3. All VIF values in this dataset remained 

below 2, suggesting the absence of multicollinearity. The independent variables were standardized to 

facilitate modeling and ensure comparability across different variables. Furthermore, the target variable 

underwent a Box-Cox transformation.  

 
Table 3. Summary of the variables used for modeling 

Variable Description Source Year 

Original 

Geographical 

Unit 

Variable Type 
Mean (Standard 

Deviation) 
VIF 

% Older  

The 

proportion of 

populations 

age 65+ 

ACS 2021 ZCTA5 
Independent 

(socioeconomic) 
21.0% (9.2%) 1.1 

% Bachelor 

The 

proportion of 

populations 

with 

Bachelor’s 

degree or 

higher 

ACS 2021 ZCTA5 
Independent 

(socioeconomic) 
31.8% (18.5%) 1.4 

% Rent 

The 

proportion of 

renter-

ACS 2021 ZCTA5 
Independent 

(socioeconomic) 
22.1% (19.5%) 1.3 
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occupied 

housing units 

Low speed 

network 

density 

Miles of low-

speed road 

links per 

square mile  

SLD 2018 CBG 

Independent 

(built 

environment) 

7.3 (5.3) 1.6 

Transit 

accessible 

jobs 

Number of 

jobs within 

45 minutes 

transit travel 

time 

SLD 2020 CBG 

Independent 

(built 

environment) 

129750.4 

(166480.1) 
1.5 

Mixed land 

uses 

Employment 

and 

household 

entropy 

SLD 2020 CBG 

Independent 

(built 

environment) 

0.5 (0.1) 1.1 

Home 

burden 

The 

proportion of 

home cost on 

income 

CNT 2019 Census Tract 

Independent 

(built 

environment) 

28.0% (7.1%) 1.4 

Charging 

stations 

Number of 

charging 

stations 

AFDC 2021 ZIP Code 

Independent 

(built 

environment) 

0.8 (2.5) 1.1 

EV 

ownership 

Electric 

vehicles 

ownership 

per 1K 

people 

EValuateNY 2021 ZIP Code Target 5.6 (6.4) - 

 

4.3 Model comparison criteria 

Moran's I is a useful metric for examining the spatial clustering of model residuals. The Moran's I statistic 

spans the range from -1, indicative of dispersion, to 1, signifying clustering. The positive or negative sign 

of the value discerns positive or negative spatial autocorrelation, respectively. Specifically, a positive 

Moran's I implies a tendency for similar values to co-occur in proximity, while a negative value suggests 

a dissimilarity in nearby observations.  

 Within the framework of a regression model, Moran's I plays a crucial role in investigating the 

spatial autocorrelation of errors between observations. The emergence of a statistically significant p-value 

for Moran's I can serve as an indicator of a departure from the assumption of independence among model 

errors. This spatial dependence may provide insights into previously unexplored spatial patterns or 

overlooked local influences. 

Consequently, in this study, we examine the Moran's I value derived from the residuals of each 

model to discern which models more adeptly capture the spatial association between socio-economic and 

built environment variables and EV ownership. To facilitate a comprehensive comparison, we also 

analyze the results of the Ordinary Least Squares (OLS) model alongside the spatial regression models. 

In addition to the assessment of spatial dependency, the evaluation of model fit is conducted 

through established statistical measures, including adjusted R-squared, Akaike Information Criterion 

(AIC), and Log-Likelihood. To further evaluate the model's performance, a critical examination is 

undertaken to discern the presence of overfitting. A 5-fold cross-validation is executed as a methodical 

approach, exposing the model to different subsets of the dataset iteratively. The resultant average training 

and testing errors serve as pivotal indicators. Specifically, a low training error with a high testing error 

raises concern, potentially signaling the presence of overfitting. Consequently, this consideration indicates 

the potential unreliability of coefficients. 
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5. Results 

5.1 Impact of distance to charging station range 

Relying solely on counting the number of charging stations within a ZCTA5 area may not be sufficient to 

gauge the overall charging infrastructure needs. To address this concern, we conducted additional 

estimations of the number of charging stations located at varying distances from the ZCTA5 centroid, 

including 5, 10, 25, 50, 75, and 100 miles. This assessment offers insights into the distances people are 

likely to consider when deciding to use a charging station. 

We calculated the number of charging stations within various distances from the centroid of each 

ZCTA5 area. The considered distances were 5 miles, 10 miles, 25 miles, 50 miles, and 100 miles. In this 

analysis, we substituted the original charging station variable (i.e., counts within ZCTA5) with counts 

within different geographical units, including 5-mile radius, 10-mile radius, 25-mile radius, 50-mile 

radius, and 100-mile radius, while holding the other independent variables constant. 

To determine the most influential distance range of charging stations on EV ownership, we used 

AIC as a measure of model fit. The results of the four models are analyzed together. Lower AIC values 

indicate better model fit, signifying a more significant role for the specific range of charging stations. The 

results from four models were collectively analyzed. We illustrated the relationship between AIC and the 

different ranges of the charging station variable in Figure 4. The results revealed that the number of 

charging stations within a 10-mile radius had the strongest correlation with EV ownership across all 

models, albeit with subtle changes. Consequently, we selected the number of charging stations within 10 

miles from the centroid of each ZCTA5 area for inclusion in the final model. This choice ensures that the 

model captures the most relevant information about the impact of charging station availability on EV 

ownership.  

 

 
Figure 4. MGWR AIC by different charging station variables  
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5.2 Regression results 

A summary of the modeling results is presented in Table 4, with coefficients of built environment and 

socioeconomic variables, along with their standard errors, depicted Figure 5 and Figure 6 respectively.  

Upon examining coefficients across the four models, consistent signs are observed for all 

variables. Except for transit accessible jobs, built environment variables—such as low-speed network 

density, employment and household entropy, and the number of charging stations—demonstrate a 

positive influence on EV ownership. The relatively high coefficient for the number of charging stations 

suggests a notable impact compared to other built environment variables. Conversely, the proportion of 

rental families exhibits a negative influence on EV ownership. Although low-speed network density 

positively influences EV ownership, it lacks significance in the Spatial Lag or Spatial Error models. 

Variables such as the share of individuals with a Bachelor’s degree, older populations, and housing 

burden demonstrate a positive influence, with educational background standing out with a relatively 

higher impact compared to other socioeconomic variables. A comparison between Figure 5 and Figure 6 

reveals a relatively higher standard error for built environment factors compared to socioeconomic 

variables. This indicates that the current modeling framework may not adequately capture the impact of 

built environment factors. 

Regarding spatial autocorrelation, the Moran’s I value derived from the OLS model suggests the 

presence of spatial autocorrelation in EV ownership. In simpler terms, the basic linear model falls short of 

fully explaining the variance in EV ownership. Notably, the Moran’s I value for the Spatial Lag model is 

0.0028, indicating no significant deviation from zero, signifying an absence of spatial autocorrelation in 

model residuals. This suggests that the Spatial Lag model excels in capturing spatial dependencies among 

EV ownership by incorporating information from adjacent ZCTA5 areas. In contrast, both the OLS model 

and Spatial Error model appear less adept at capturing such spatial dependencies. 

When comparing model fit, the GWR and Spatial Lag models exhibit relatively higher Adjusted 

R-Squared values and Log-Likelihoods, along with lower AIC values, suggesting better fits. The Spatial 

Lag model, however, shows relatively smaller standard errors for most explanatory variables compared to 

other models. GWR appears to outperform Spatial Lag, with a lower AIC and higher Log-Likelihood.  

Since superior model fit may raise concerns about overfitting, a 5-fold cross-validation is 

conducted, revealing average training and testing errors. None of the models exhibit clear signs of 

overfitting. Although GWR demonstrates better goodness-of-fit and lower training error than the Spatial 

Lag model, its slightly higher test error suggests that the Spatial Lag model might be less sensitive to 

overfitting.   

 
Table 4. Modeling coefficients, standard error, and summary 
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  OLS GWR Spatial Lag Spatial Error 

  Coef. 
Std. 

Error 
Coef. 

Std. 

Error 
Coef. 

Std. 

Error 
Coef. 

Std. 

Error 

Variable 

Intercept 0.06 0.11 0.22 0.13 0.00 0.10 0.16 0.11 

% older people 0.54** 0.16 0.53 0.19 0.47*** 0.15 0.45** 0.16 

% Bachelor 

degree of higher 
1.54*** 0.11 1.40 0.14 1.32*** 0.11 1.41*** 0.12 

% Rent -0.51*** 0.12 -0.49 0.15 -0.37*** 0.12 -0.39*** 0.13 

Low speed 

network density 
0.30* 0.15 0.25 0.18 0.23 0.14 0.23 0.16 

Employment 

and household 

entropy 

0.31* 0.15 0.28 0.19 0.22 0.15 0.29* 0.15 

Transit 

accessible jobs 
-0.12* 0.05 -0.11 0.06 -0.09* 0.05 -0.09 0.06 

Housing 

cost/income 
0.95*** 0.17 0.76 0.21 0.77*** 0.16 0.87*** 0.18 

Charging 

stations 
0.66*** 0.08 0.68 0.09 0.49*** 0.08 0.62*** 0.09 

Spatial 

Dependency 
Moran I 0.44*** 0.077*** 0.0028 (p=0.429) 0.131*** 

Goodness-of-

fit 

Adjusted R2 0.37 0.42 0.41 0.38 

AIC 2739.00 2641.29 2685.18 2698.26 

Log-Likelihood -1360.70 -1298.33 -1332.59 -1340.13 

Presence of 

Overfitting 

Training MAE 

(5-fold CV) 
0.457 0.436 0.444 0.461 

Testing MAE 

(5-fold CV) 
0.481 0.478 0.472 0.476 

*p ≤ 0.05  **p ≤ 0.01  ***p ≤ 0.001 

GWR coefficients do not have global p-value  

 

 

 
Figure 5. Coefficients and standard errors of the built environment variables  
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Figure 6. Coefficients and standard errors of the socioeconomic variables  

 

6. Discussions 

6.1 Model comparison  

Upon reviewing the coefficients of the four models, it becomes apparent that there is relatively small 

variation among them. This consistency implies a robust relationship between the built environment, 

socioeconomic factors, and EV ownership. A spatial dependency check highlights the Spatial Lag model's 

superior ability to capture spatial autocorrelation. Additionally, the Spatial Lag model exhibits lower 

susceptibility to overfitting. 

 The relatively higher performance of the Spatial Lag model can be attributed to several factors. A 

comparison of the model forms of Spatial Lag and Spatial Error Models, extensively discussed in the 

literature, provides valuable insights. The Spatial Lag regression model incorporates dependent variables 

in an area with connections to other associated areas, while the Spatial Error regression model accounts 

for the dependency of error values in an area with errors in other associated areas. Essentially, the Spatial 

Error model is deemed more suitable when unobserved factors influencing the target variable exist. Our 

findings suggest that the EV ownership pattern aligns more closely with a Spatial Lag model, where the 

EV ownership of adjacent zones could influence the EV ownership of a given zone. A comparison of the 

target variable and its spatial lag, weighted by adjacent neighbors in Figure 7, reveals similarities in their 

forms. The spatial lag value similarly reflects regions with relatively high or low EV ownership. The 

Spatial Error model's underperformance in this study implies that unobserved factors might not be 

significant, and the current set of explanatory variables likely account for a substantial portion of the 

variance in EV ownership. In practical terms, this finding could be supported by social influence impact, 

where people are likely to be influenced by those around them to buy EV (Axsen et al., 2013; Pettifor et 

al., 2017). While this phenomenon is commonly studied at the individual level via surveys, our study 

extends this understanding to a broader geographical level. 
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(a) Box-Cox transformed EV ownership                               (b) Spatial Lag 

Figure 7. Comparison of target variable and its spatial lag 

Concerning the GWR model, this method entails estimating local models for each spatial 

location, introducing potential increased model complexity. In our case, where local variations are not 

evidently pronounced, justifying this complexity may be challenging and could result in poorer model 

performance. This is evident in GWR's slightly higher susceptibility to overfitting, as indicated by a 

slightly higher test error compared to the Spatial Lag model. It is worth noting that GWR could 

potentially benefit from a larger dataset, such as panel data across years for each observation (i.e., ZCTA5 

or other zones), to better demonstrate its superiority (Yu, 2010; Yu et al., 2021).  

 

6.2 Interpretations of key findings 

The Spatial Lag model, alongside other models, consistently indicates a positive association between 

higher education and increased EV ownership. This relationship can be explained by several 

interconnected factors. Firstly, education significantly influences income levels (Jia & Chen, 2021; 

Sovacool et al., 2019). Higher education often provides access to better-paying job opportunities, 

enabling individuals to afford electric vehicles. Moreover, education correlates with heightened 

awareness of environmental issues, specifically the impact of conventional vehicles on climate change 

(Bansal et al., 2015; Egbue & Long, 2012). This environmental consciousness may motivate individuals 

with higher education to adopt eco-friendly transportation alternatives. Beyond economic and 

environmental considerations, electric vehicle ownership can symbolize an individual's personal values, 

particularly those related to environmental awareness (Heffner et al., 2007). We also observed that higher 

concentrations of older populations correlate with increased EV ownership rates, likely due to their 

association with higher incomes. Additionally, previous mobility analysis in New York State suggests 

that older individuals undertake shorter trips on average (Y. Liu et al., 2022; Pan et al., 2023), reducing 

range anxiety and making EVs more appealing. Some individuals within this demographic group may 

exhibit consistent adoption of EV. Future research could delve deeper into understanding which groups or 

regions within the older population might express greater interest in purchasing EVs compared to others. 

Such insights have the potential to inform strategic initiatives that facilitate the broader integration of EVs 

into diverse demographic segments. 

The share of rental populations showed a negative association with EV ownership, aligning with 

the fact that about 80% of all EV charging occurs at home (Ge et al., 2021). This implies that a lack of 

easily accessible charging stations poses a barrier for renters to adopt EVs. While a dedicated home 

charging place appears to be a necessary condition for EV ownership, the presence of public charging 

infrastructure could also play a role. The relatively significant coefficient of EV charging stations within a 

10-mile radius from a ZCTA5 could reflect people’s preferences for the charging range, potentially 

influencing their decision to own an EV. This range often includes workplaces, retail locations, and transit 
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facilities where public charging stations are frequently utilized (Ai et al., 2018; Borlaug et al., 2023). 

While most charging occurs at home, having accessible public charging within this radius provides added 

convenience, potentially enhancing the appeal of EV ownership. This alternative option could contribute 

to a higher likelihood of adoption. This finding also aligns with research indicating that individuals are 

more willing to detour to a charging station if the detour is less than ten minutes (Philipsen et al., 2017; 

Sun et al., 2016). 

Current literature indicates that the built environment influences people’s vehicle ownership and 

mode choice; for instance, a high degree of mixed land use may shorten commuting origin-destination 

distances, reducing the likelihood of owning multiple vehicles (Ding et al., 2018; Zegras, 2010). 

However, in this study, mixed land use is not found to be significant. Other built environment variables 

such as low speed network density appear to have relatively higher standard error than socioeconomics 

variables, indicating that their impact might not be captured well using the existing modeling framework. 

The Spatial Lag model indicates that the availability of employment opportunities reachable through 

transit systems may act as inhibiting factors for EV ownership. Individuals may perceive transit-

connected job options as convenient and cost-effective, reducing the perceived need for personal vehicle 

ownership, including EVs, as an alternative mode of transportation (Langbroek et al., 2018).  

In summary, our study contributes to the existing literature by introducing a data-driven modeling 

framework for studying EV ownership. The practical utility of this framework lies in offering public 

agencies an alternative data collection and modeling perspective, allowing them to understand the factors 

influencing people's decisions to own an EV without exclusively relying on surveys. While we used New 

York State as our study region, the data analyzed, such as AFDC and ACS data, is not exclusive to New 

York State but is readily available in many other states as well. This approach has the potential to save 

time and effort for public agencies, providing them with a broader regional insight.  

 

 

6.3 Limitations and future studies 

There are a few limitations that need to be considered in this study. Firstly, the availability of data on EV 

ownership at more commonly used geographical units, such as Census Block Groups or Census Tracts, 

was constrained by the data format of the vehicle registration datasets. Although efforts were made to 

match Census Tracts with ZCTA5, there were certain regions that had to be excluded from the modeling 

due to a low level of overlap. This means that the analysis may not fully capture the variations in EV 

ownership across all geographic areas. Secondly, while the study examined a wide range of built 

environment characteristics, only a few of them were found to significantly contribute to the model's 

performance, and consequently, only those were included in the final model. Moreover, despite the 

primary use of linear regression-based models in this study, the relatively high standard error suggests the 

possibility of employing nonlinear relationships to better capture the impact of built environment 

variables. Temporal features such as transit frequency, though potentially influential on EV ownership, 

weren't extensively explored. Future studies could expand the geographical scope by considering multiple 

states or regions and explore a broader set of built environment variables to gain a more comprehensive 

understanding of the factors influencing EV ownership. Additionally, including socioeconomic factors 

such as proportion of advanced degrees, ownership of more than two vehicles, single-family house 

prevalence, and average commute distance could be valuable. Yet, these factors might exhibit 

multicollinearity; for instance, households with multiple vehicles were found strongly correlated with 

median income and transportation burden. Principal Component Analysis could potentially facilitate 

forming variable groups, enhancing model input comprehensiveness and efficiency. Regarding the 

modeling approach, while GWR does not exhibit superior performance compared to the Spatial Lag 

model, the introduction of panel data could potentially enhance its efficacy. However, the primary built 

environment SLD data, crucial for this study, has not been compiled for multiple years, restricting the 

ability to implement a panel data model in the current research. Despite the emphasis on spatial regression 

models in this study, it is important to acknowledge the possibility of exploring other statistical or 
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machine learning models. Diversifying the modeling approach could offer valuable insights and 

contribute to a more comprehensive understanding of the relationships inherent in the data. This 

consideration opens up opportunities to leverage alternative methodologies that might uncover patterns 

and relationships that spatial regression models alone may not capture. 

 

7. Conclusions 

This study explores the impact of social and built environment factors on electric vehicle (EV) ownership, 

utilizing five publicly available datasets: EValuateNY, Smart Location Database (SLD), Alternative Fuels 

Data Center (AFDC), American Community Survey (ACS), and Center for Neighborhood Technology 

(CNT). Spatial regression models, including Spatial Lag, Spatial Error, and Geographically Weighted 

Regression, along with Ordinary Least Squares, are employed to investigate these relationships. The 

analysis reveals consistent coefficient values across different models, enhancing confidence in the 

robustness of the findings. 

The Spatial Lag model emerges as particularly noteworthy, outperforming other models and 

suggesting that EV ownership in adjacent zones could significantly influence the EV ownership within a 

given zone. Furthermore, the proximity of charging stations within a 10-mile radius from a ZCTA5 is 

revealed to reflect individuals' preferences for convenient charging alternatives, thereby impacting their 

decision to own an EV. Noteworthy correlations also emerge, indicating that higher education levels, 

lower rental populations, and concentrations of older populations are associated with increased EV 

ownership. 

This coherence in findings underscores the validity of the models, emphasizing that public data 

sources serve as effective tools for elucidating the influence of built environment and socioeconomic 

factors on EV ownership. Leveraging public data presents a more accessible alternative for analyzing 

these factors across a broader region, potentially complementing traditional survey methods that may be 

susceptible to variations in stated preferences and actual behavior. The study thus contributes to 

understanding of the factors influencing EV ownership, shedding light on the practicality and reliability 

of utilizing publicly available data for such analyses.  
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