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ABSTRACT1

This paper presents a mathematical model for the routing of multicommodity freight in an intermodal net-2

work under disruptions. A stochastic mixed integer program is formulated, which minimizes not only oper-3

ational costs of different modes and transfer costs at terminals but also penalty costs associated with unsat-4

isfied demands. The Sample Average Approximation algorithm is used to solve this challenging problem.5

The developed model is applied to two networks, a hypothetical 15-node network and an actual intermodal6

network in the Gulf Coast, Southeastern and mid-Atlantic regions of the U.S., to demonstrate its applicabil-7

ity, with explicit consideration of disruptions at links, nodes, and terminals. The model results indicate that8

under disruptions, goods in the study region should be shipped via road-rail intermodal due to the built-in9

redundancy of the freight transport network. Additionally, the routes generated by the model are found to10

be more robust than those typically used by freight carriers.11

12

Keywords: Multicommodity freight, minimum cost routing, network disruptions, stochastic modeling,13

road-rail intermodal.14
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INTRODUCTION1

The freight transport network is an essential component of the economy as it supports supply chains by2

connecting spatially-separated origins and destinations of supply and demand. As such, it needs to be3

robust and resilient to support and enhance economic development. Due to the increase in international4

trade, freight flows have increased significantly and this trend is expected to continue in the future (1). For5

example, a daily average of 54 million tons of freight moved through the U.S. transportation system in6

2012. The projected freight flows will stress both public and private infrastructures as more elements of the7

network reach or exceed capacity, which in turn will affect network performances (2).8

The freight transport network is vulnerable to various disruptions. A disruptive event can be a9

natural disaster (e.g., earthquake, flooding, tornado, and hurricane) or a man-made disaster (e.g., accident,10

labor strike, and terrorism). A number of such disasters have occurred recently that severely impacted the11

freight transport network. The earthquake that occurred in 1994 on the Hayward Fault in San Francisco,12

CA caused more than 1,600 road closures and damaged most of the toll bridges and major highways (3).13

The collapse of the I-35W bridge in Minneapolis affected about 140,000 daily vehicle trips and the daily14

re-routing cost was $400,000 for the impacted users (4). The Mississippi river flooding in 2011 impacted a15

major freight route, I-40, in Arkansas. Hurricane Sandy made landfall over the New York and New Jersey16

region in 2012 caused billions of dollars in damage and severely flooded streets and tunnels along the East17

Coast of the U. S. Due to the labor strike at the Port of Long Beach in 2012, the movement of $650 million18

worth of goods was halted each day (5). These events highlight that damage to the transportation network not19

only disrupt transportation services but also result in economic losses and sociological effects. Disruptions20

in freight movements have a number of ramifications: (1) receivers will not receive their goods on time,21

(2) carriers need to find alternative routes to transport the goods that are impeded by the disruption, and22

(3) shippers need to adjust their supply chains to account for the disruption. For these reasons, adequate23

redundancy in the freight transport network is needed to prevent significant service losses in the event of a24

disruption (6).25

This paper proposes a stochastic model for the routing of multicommodity freight on a road-rail in-26

termodal network that is subject to various disruptions. The traditional intermodal location-routing model is27

extended to take into account potential network disruptions. The model can be used by carriers to determine28

the optimal road segments (highway links), rail segments (rail lines), and intermodal terminals to use under29

different types of disruptions. Since the exact evaluation of the stochastic model is difficult or impossible30

(7), the developed model is solved using the Sample Average Approximation algorithm proposed by San-31

toso et al. (8).32

33

LITERATURE REVIEW34

The multimodal freight transportation planning problem has been studied by many researchers over the35

past few decades, and its study was accelerated during the last decade (9). One of the earlier studies was36

done by Crainic and Rousseau (10), which presented a general modeling and algorithmic framework for the37

multicommodity, multimode freight service network to be used at the strategic and tactical planning level.38

The objective of their model is to minimize costs and delays, if a single authority controls the supply of39

transportation services and routing of goods through the service network. Their model considered capaci-40

tated network elements (i.e., roadways, rail lines, and terminals have finite capacities) and a penalty cost for41

excess assignment over capacity.42

The majority of the studies that deal with intermodal freight shipments seek to minimize routing43

cost. Barnhart and Ratliff (11) proposed a model for minimizing routing cost in a road-rail intermodal44

network. Their model was to help shippers in deciding routing options. It used shortest path and matching45

algorithmic procedures to achieve the objective. Boardman et al. (12) developed a software-based decision46

support system (DSS) to assist shippers in making the best selection given a combination of modes. The47

crux of this DSS is the calculation of least-cost paths using a k-shortest path method, while requiring the48
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transportation costs of all modes and transfer costs between modes as input. A similar approach was used1

by Song and Chen (13) in their development of mode selection software. However, the modes considered by2

Song and Chen had pre-scheduled departure times. The authors concluded that the minimum cost delivery3

problem is equivalent to the shortest path problem if the release time at the origin and the due date at the4

destination are provided.5

A number of studies have addressed the intermodal routing problem with time windows. Zil-6

iaskopoulos and Wardell (14) proposed an algorithm for finding the optimal time-dependent intermodal path7

in a multimodal transportation network. Their algorithm considered mode and arc switching delays. Xiong8

and Wang (15) developed a bi-level multi-objective model and genetic algorithmic framework for the rout-9

ing problem with time windows in a multimodal network. Ayar and Yaman (16) investigated an intermodal10

multicommodity routing problem where release times and due dates of commodities were pre-scheduled in11

a planning horizon.12

All of the aforementioned studies assume that the freight transport network is always functioning13

and is never disrupted, which is not realistic. To account for natural or man-made disruptions, some re-14

searchers have studied the reliability, vulnerability, and resiliency of transportation networks. Snyder and15

Daskin (17) presented a reliable uncapacitated location problem considering failure of facilities in the net-16

work. Their model finds reliable facility location by taking into account the expected transportation cost17

after failure, in addition to the minimum operational cost. Cui et al. (18) extended this work to consider fail-18

ures with site-dependent probabilities and re-routing of customers when there are failures. Peng et al. (19)19

also considered disruptions of facility in reliable logistics network design. Their mixed integer program not20

only minimizes the nominal cost but also reduces disruption risks by employing the p-robustness criterion.21

A resilient freight transport network is one that can recover from any disruption by preventing,22

absorbing, or mitigating its effects (9). A decision model to address disruptive events in an intermodal freight23

transport network was proposed by Huang et al. (20). Their model re-routes flows if the forecasted delay on24

a distressed link exceeds a pre-specified threshold. In a study performed by Chen and Miller-Hooks (21), a25

method to quantify resilience of an intermodal freight transport network was developed. They formulated26

a stochastic mixed integer program that aims to minimize unsatisfied demands during disruptions. Their27

model was solved using several exact algorithms; however, the application was limited to only small-scale28

networks due to high computational time requirements. Miller-Hooks et al. (22) extended this work to29

maximize freight transport network resiliency by implementing preparedness and recovery activities within30

a given budget. A stochastic program was developed which maximizes freight flows in the network under31

disruptions. Similar to their previous study, the model was applied to the same small-scale networks.32

A few studies have considered network vulnerability in the planning decision. Peterson and Church33

(23) investigated rail network vulnerability by formulating both uncapacitated and capacitated routing-based34

model, and applied their model to a statewide network. Garg and Smith (24) presented a methodology for35

designing a survivable multicommodity flow network. Their model analyzes failure scenarios involving36

multiple arcs. Most recently, Gedik et al. (25) assessed network vulnerability and re-routing of coal by rail37

when disruptions occur in the network.38

This study fills a gap in the literature by addressing the multicommodity routing problem in an in-39

termodal road-rail network that is subject to disruptions. This study is most closely related to the works40

performed by Chen and Miller-Hooks (21) and Miller-Hooks et al. (22) in that they focus on solving the41

road-rail intermodal freight routing problem with explicit consideration of network disruptions. However,42

there are several notable differences between our work and theirs: (1) our study considers the multicommod-43

ity aspect (different commodities may have different delivery requirements and some commodities might44

need to be separated to facilitate early or delayed delivery); (2) our study proposes a new model that uses a45

link-based formulation; and (3) our model is applied to an actual large-scale intermodal freight network.46

47
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MODEL FORMULATION1

The formulation assumes that a road-rail intermodal freight transportation network is represented by a di-2

rected graph G = (N ,A), where N is the set of nodes and A is the set of links. Set N consists of the3

set of major highway intersections H, the set of major rail junctions R, and the set of intermodal termi-4

nals S, i.e., N = H ∪ R ∪ S. Set A consists of the set of highway links Ah and the set of railway links5

Ar, i.e., A = Ah ∪ Ar. Shipments can change mode at the intermodal terminal nodes S. Each highway6

link (i, j) ∈ Ah and railway link (i, j) ∈ Ar have unit transportation costs associated with them for each7

commodity k ∈ K shipment. Each intermodal terminal s ∈ S has also a unit transfer cost for each com-8

modity k ∈ K shipment. Another important cost parameter is the penalty cost of unsatisfied demand Ψ.9

The capacity of each highway link, railway link, and intermodal terminal are disruption-scenario dependent,10

i.e. capacities will be different at different disruption scenarios. Similarly, the travel time on highway and11

railway links and the transfer time at terminals is disruption-scenario dependent.12

13

Sets / Indices14

H set of major highway intersections
R set of major rail junctions
S set of candidate intermodal terminals
Ah set of highway links
Ar set of railway links
C set of OD pairs
K set of commodities
Pc set of paths p connecting OD pair c
Ω set of disruption scenarios
k commodity type, k ∈ K
i, j, s node, i, j, s ∈ N
c a OD pair, c ∈ C
ω a disruption scenario, ω ∈ Ω

15

16

Parameters17

dck original demand of commodity k ∈ K between OD pair c ∈ C
Ψ unit penalty cost for unsatisfied demand
βijk unit cost of transporting commodity k ∈ K by truck in link (i, j) ∈ Ah
β̃ijk unit cost of transporting commodity k ∈ K by rail in link (i, j) ∈ Ar
βsk unit cost of transferring commodity k ∈ K in intermodal terminal s ∈ S
Qij(ω) capacity of highway link (i, j) ∈ Ah under disruption ω
Q̃ij(ω) capacity of railway link (i, j) ∈ Ar under disruption ω
Qs(ω) capacity of intermodal terminal s ∈ S under disruption ω
tij(ω) travel time on highway link (i, j) ∈ Ah under disruption ω
t̃ij(ω) travel time on railway link (i, j) ∈ Ar under disruption ω
ts(ω) processing time in intermodal terminal s ∈ S under disruption ω
T ck delivery time for commodity k ∈ K between OD pair c ∈ C
M sufficiently large number
ε sufficiently small number

18

19
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Continuous Variables1

Xc
ijk(ω) fraction of commodity k ∈ K transported in highway link (i, j) ∈ Ah between OD pair c ∈ C

under disruption ω
X̃c
ijk(ω) fraction of commodity k ∈ K is transported in railway link (i, j) ∈ Ar between OD pair c ∈ C

under disruption ω
U ck(ω) unsatisfied demand of commodity k ∈ K between OD pair c ∈ C under disruption ω
F csk(ω) fraction of commodity k ∈ K between OD pair c ∈ C transferred at terminal s ∈ S under

disruption ω

2

3

Indicator Variables4

Y c
sk(ω) binary variable indicating whether or not candidate intermodal terminal s ∈ S is selected for

commodity k ∈ K between OD pair c ∈ C under disruption ω (= 1 if intermodal terminal s is
selected for commodity k between OD pair c, = 0 otherwise)

δcijk(ω) binary variable indicating whether or not there is any flow in highway link (i, j) ∈ Ah for
commodity k ∈ K between OD pair c ∈ C under disruption ω (= 1 if highway link (i, j) carries
flow of commodity k between OD pair c, = 0 otherwise)

δ̃cijk(ω) binary variable indicating whether or not there is any flow in railway link (i, j) ∈ Ar for
commodity k ∈ K between OD pair c ∈ C under disruption ω (= 1 if railway link (i, j) carries
flow of commodity k between OD pair c, = 0 otherwise)

5

6

Model Formulation7

The stochastic multicommodity intermodal freight shipment routing (SMIFR) problem is formulated as fol-
lows.

Min Eω

[∑
k∈K

∑
c∈C

(
dck

( ∑
(i,j)∈Ah

βijkX
c
ijk(ω) +

∑
(i,j)∈Ar

β̃ijkX̃
c
ijk(ω) +

∑
s∈S

βskF
c
sk(ω)

)
+ ΨU ck(ω)

)]
(1)

Subject to

∑
(i,m)∈Ah

Xc
imk(ω)−

∑
(m,i)∈Ah

Xc
mik(ω)


≤ +1 if i = oric

≥ −1 if i = desc

= 0 otherwise
, ∀i ∈ H, k ∈ K, c ∈ C, ω ∈ Ω (2)

∑
i∈oric

Xc
imk(ω)−

∑
j∈desc

Xc
mjk(ω) = 0, ∀k ∈ K, c ∈ C, ω ∈ Ω (3)

Xc
imk(ω) ≤ δcimk(ω), ∀(i,m) ∈ Ah, k ∈ K, c ∈ C, ω ∈ Ω (4)

Xc
mik(ω) + δcimk(ω) ≤ 1, ∀(m, i) ∈ Ah, k ∈ K, c ∈ C, ω ∈ Ω (5)

∑
(i,m)∈Ah

Xc
imk(ω)

∑
(m,i)∈Ah

Xc
mik(ω) = 0, ∀i ∈ oric, k ∈ K, c ∈ C, ω ∈ Ω (6)
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∑
(i,n)∈Ar

X̃c
ink(ω)−

∑
(n,i)∈Ar

X̃c
nik(ω) = 0, ∀i ∈ R, k ∈ K, c ∈ C, ω ∈ Ω (7)

∑
(s,m)∈Ah

Xc
smk(ω)−

∑
(m,s)∈Ah

Xc
msk(ω) +

∑
(s,n)∈Ar

X̃c
snk(ω)−

∑
(n,s)∈Ar

X̃c
nsk(ω) = 0,

∀s ∈ S, k ∈ K, c ∈ C, ω ∈ Ω (8)

( ∑
(s,n)∈Ar

X̃c
snk(ω)−

∑
(n,s)∈Ar

X̃c
nsk(ω)

)(
1− Y c

sk(ω)
)

= 0, ∀s ∈ S, k ∈ K, c ∈ C, ω ∈ Ω (9)

F csk(ω) =

∣∣∣∣∣ ∑
(s,m)∈Ah

Xc
smk(ω)−

∑
(m,s)∈Ah

Xc
msk(ω)

∣∣∣∣∣, ∀s ∈ S, k ∈ K, c ∈ C, ω ∈ Ω (10)

ε Y c
sk(ω) ≤ F csk(ω) ≤ Y c

sk(ω), ∀s ∈ S, k ∈ K, c ∈ C, ω ∈ Ω (11)

∑
(i,j)∈(Ah

⋂
p)

δcijk(ω) tij(ω) +
∑

(i,j)∈(Ar
⋂
p)

δ̃cijk(ω) t̃ij(ω) +
∑

s∈(S
⋂
p)

Y c
sk(ω) ts(ω) ≤ T ck ,

∀p ∈ Pc, k ∈ K, c ∈ C, ω ∈ Ω (12)

ε δcijk(ω) ≤ Xc
ijk(ω) ≤ δcijk(ω), ∀(i, j) ∈ Ah, k ∈ K, c ∈ C, ω ∈ Ω (13)

ε δ̃cijk(ω) ≤ X̃c
ijk(ω) ≤ δ̃cijk(ω), ∀(i, j) ∈ Ar, k ∈ K, c ∈ C, ω ∈ Ω (14)

∑
k∈K

∑
c∈C

dckX
c
ijk(ω) ≤ Qij(ω), ∀(i, j) ∈ Ah, ω ∈ Ω (15)

∑
k∈K

∑
c∈C

dckX̃
c
ijk(ω) ≤ Q̃ij(ω), ∀(i, j) ∈ Ar, ω ∈ Ω (16)

∑
k∈K

∑
c∈C

dckF
c
sk(ω) ≤ Qs(ω), ∀s ∈ S, ω ∈ Ω (17)

dck

(
1−

∑
i∈H

Xc
ijk

)
= U ck(ω), ∀k ∈ K, c ∈ C, j = desc, ω ∈ Ω (18)

0 ≤ Xc
ijk(ω) ≤ 1, ∀(i, j) ∈ Ah, k ∈ K, c ∈ C, ω ∈ Ω (19)
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0 ≤ X̃c
ijk(ω) ≤ 1, ∀(i, j) ∈ Ar, k ∈ K, c ∈ C, ω ∈ Ω (20)

0 ≤ F csk(ω) ≤ 1, ∀s ∈ S, k ∈ K, c ∈ C, ω ∈ Ω (21)

U ck(ω) ∈ Z+, ∀k ∈ K, c ∈ C, ω ∈ Ω (22)

Y c
sk(ω) ∈ {0, 1}, ∀s ∈ S, k ∈ K, c ∈ C, ω ∈ Ω (23)

δcijk(ω) ∈ {0, 1}, ∀(i, j) ∈ Ah, k ∈ K, c ∈ C, ω ∈ Ω (24)

δ̃cijk(ω) ∈ {0, 1}, ∀(i, j) ∈ Ar, k ∈ K, c ∈ C, ω ∈ Ω (25)

The objective function (1) seeks to minimize the total expected system cost across disruption scenar-1

ios. Specifically, the expected system cost includes the transportation cost on highway and railway links, the2

transfer cost at intermodal terminals, and the penalty cost for unsatisfied demands. Constraints (2)–(6) en-3

sure flow conservation at highway nodes (H). The notations oric and desc denote the origin and destination4

node of a OD pair c ∈ C, respectively. Similarly, constraint (7) ensures flow conservation at railway nodes5

(R). Constraints (8) and (9) ensure flow conservation at intermodal terminals (S); constraint (8) maintains6

the conservation if a terminal is selected whereas constraint (9) maintains conservation if the terminal is7

not selected. The decision variables F csk(ω),∀s ∈ S, k ∈ K, c ∈ C, ω ∈ Ω are calculated in constraint8

(10). Constraints (9) and (10) are adapted from the work of Xie et al. (26). Constraint (11) establishes the9

relationship between decision variables F csk(ω) and Y c
sk(ω). Constraint (12) ensures that each commodity10

shipment is delivered before the delivery deadline T ck ,∀k ∈ K, c ∈ C. The relationship between decision11

variables Xc
ijk(ω) and δcijk(ω) are expressed in constraint (13), and the relationship between decision vari-12

ables X̃c
ijk(ω) and δ̃cijk(ω) are expressed in constraint (14). Constraints (15)–(17) ensure that flows are less13

than or equal to the capacity of highway links, railway links, and intermodal terminals, respectively. Con-14

straint (18) determines the unsatisfied demand U ck(ω),∀k ∈ K, c ∈ C, ω ∈ Ω. Lastly, constraints (19)–(21)15

are the definitional constraints, constraint (22) is the integrality constraint, and constraints (23)–(25) are the16

binary constraints.17

18

Linear Formulation19

The proposed model is not linear, since it has several non-linear constraints: (6), (9), and (10). Non-linear20

models are generally very difficult to solve; thus, the non-linear constraints are reformulated to make the21

model tractable. The equivalent linear forms are22

∑
(i,m)∈Ah

Xc
imk(ω) ≥ M

∑
(m,i)∈Ah

Xc
mik(ω), ∀i ∈ oric, k ∈ K, c ∈ C, ω ∈ Ω (26)

−MY c
sk(ω) ≤

∑
(s,n)∈Ar

X̃c
snk(ω)−

∑
(n,s)∈Ar

X̃c
nsk(ω) ≤MY c

sk(ω), ∀s ∈ S, k ∈ K, c ∈ C, ω ∈ Ω

(27)
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− F csk ≤
∑

(s,m)∈Ah

Xc
smk(ω)−

∑
(m,s)∈Ah

Xc
msk(ω) ≤ F csk, ∀s ∈ S, k ∈ K, c ∈ C, ω ∈ Ω (28)

Constraint (26) is equivalent to constraint (6), which prevents sub-tours. Adopting the approach1

used by (26), constraints (9) and (10) can be reformulated as constraints (27) and (28), respectively. By2

replacing constraints (6), (9) and (10) with constraints (26), (27), and (28), the revised model is a stochastic3

mixed integer linear program.4

5

ALGORITHMIC STRATEGY6

A key difficulty in solving a stochastic program is in evaluating the expectation of the objective function.7

One approach for accomplishing this is to approximate the expected objective function value through sample8

averaging. This study adopts the Sample Average Approximation (SAA) algorithm proposed by Santoso et9

al. (8). Without loss of generality, the objective function of the model can be rewritten as follows, where Λ10

represents the decision variables.11

12

min
Λ

E
[
Θ(Λ, ω)

]
(29)

The SAA Algorithm13

Step 1. Generate M independent disruption-scenario samples each of size N , i.e., (ω1
j , ..., ω

N
j ) for j =14

1, ...,M . For each sample, solve the corresponding SAA problem.15

min
Λ

1

N

N∑
n=1

Θ(Λ, ωnj ) (30)

Let f jN and Λ̂jN , j = 1, ....,M , be the corresponding optimal objective function value and an16

optimal solution of the model, respectively.17

Step 2. Compute f̄N and σ2
f̄N

using the following equations.18

f̄N :=
1

M

M∑
j=1

f jN (31)

19

σ2
f̄N

:=
1

M(M − 1)

M∑
j=1

(f jN − f̄N )2 (32)

Here f̄N provides a lower statistical bound for the optimal value f∗ of the true problem, and σ2
f̄N

20

is an estimate of the variance of the estimator.21

Step 3. Choose a feasible solution Λ̃ from the above computed solutions Λ̂jN , and generate anotherN ′ in-22

dependent disruption-scenario samples, i.e., ω1, ....ωN
′
. Then estimate the true objective function23

value f̃N ′(Λ̃) and variance of this estimator as following.24

f̃N ′(Λ̃) :=
1

N ′

N ′∑
n=1

Θ(Λ̃, ωn) (33)

25

σ2
N ′(Λ̃) :=

1

N ′(N ′ − 1)

N ′∑
n=1

[
Θ(Λ̃, ωn)− f̃N ′(Λ̃)

]2
(34)
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In solving SAA problems, typically, N ′ is much larger than the sample size N .1

Step 4. Compute the optimality gap of the solution and variance of the gap estimator.2

Gap (Λ̃) := f̃N ′(Λ̃)− f̄N (35)
3

σ2
gap = σ2

N ′(Λ̃) + σ2
f̄N

(36)

NUMERICAL EXPERIMENTS4

To assess the applicability of the proposed model (SMIFR) and solution algorithm, two sets of experiments5

are conducted. The first set involves a hypothetical small-sized network with 15 nodes and 5 OD pairs. The6

second set involves an actual large-scale freight transport network, consisting of major highways, Class I7

railroads, and TOFC/COFC (Trailer on Flat Car/Container on Flat Car) intermodal terminals in the Gulf8

Coast, Southeastern and mid-Atlantic regions of the U.S.9

10

Network and Data Description11

Hypothetical Network12

Figure 1 shows the hypothetical 15-node road-rail freight transport network. Nodes 5, 7, 9, and 12 represent13

intermodal terminals, and node 8 represents a railway junction where trains can change track/route. The rest14

of the nodes represent highway intersections. The solid lines represent highway links, and the dashed lines15

represent railway links. The capacity of the links Qij are assumed to have a uniform distribution, each with16

a specified range [lij , uij ] where lij is the lower bound and uij is the upper bound. The capacities of the17

intermodal terminals are also assumed to have a uniform distribution with a specified range. The demand18

in terms of number of shipments and delivery deadlines for each commodity between different OD pairs is19

provided in Table 1.20

Highway Node

Railway Node

Intermodal Terminal

Highway Link

Railway Link

1

2

3

4

5

6

7

8

9

10 11

12 13

14

15

FIGURE 1 A hypothetical 15-node road-rail freight transport network.
21

22

Actual Network23

Figure 2 shows the actual road-rail freight transport network used in the second set of experiments. It is cre-24

ated using data provided by the Center for Transportation Analysis, Oak Ridge National Laboratory (27). As25

shown, it covers all of the states in the Gulf Coast, Southeastern and mid-Atlantic regions of the U.S.: Texas,26

Oklahoma, Louisiana, Alabama, Mississippi, Arkansas, Georgia, Florida, South Carolina, North Carolina,27

Tennessee, Kentucky, Virginia, Maryland, West Virginia, and Delaware. In all, the network has a total of 68228

links (U.S. interstates and major highways and Class I railroads) and 187 nodes, including 44 intermodal29

terminals. Readers can refer to the work of Uddin and Huynh (28) for more details about the network. The30

Freight Analysis Zone (FAZ) centroids from the Freight Analysis Framework version 3 (FAF3) database31
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TABLE 1 Number of Shipments and Delivery Deadlines
OD Pair Commodity Index Number of Shipments Delivery Deadline (hours)

1→ 15 1 40 84
2 35 72
3 22 60
4 20 72

1→ 11 1 30 72
2 35 72
3 40 48

2→ 13 1 42 60
2 30 48
3 50 60
4 55 48

15→ 4 1 35 72
2 45 60
3 50 72
4 30 60

14→ 3 1 45 48
2 30 60

(29) are treated as actual origins and destinations of commodity shipments. There are a total of 48 centroids1

in the study region. OD pairs are constructed from these 48 FAZ centroids, and demands are obtained from2

the FAF3 database. The demand data are filtered to include only those commodities typically transported3

via intermodal (30), and demands are converted into the number of TOFC/COFC containers using an av-4

erage load of 40,000 lbs per container. It is assumed that all commodities need to be delivered within 7 days.5

6

FIGURE 2 Large-scale U. S. road-rail intermodal network.
7

The transport cost on highways and railways are estimated to be $1.67 per mile per shipment (31)8

and $0.60 per mile per shipment (32), respectively. The transfer cost at intermodal terminals is estimated9

to be $70 per shipment (33). The travel times on highway and railway links are calculated using free-flow10

speeds.11

12

Disruption Types13

Three types of disruptive-events are considered: (1) link disruption, (2) node disruption, and (3) intermodal14

terminal disruption. Link disruptions are modeled by randomly selecting several connected links and re-15

ducing their capacities by 50%. The travel times on the affected links are increased as a result of reduced16
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capacities. Node disruptions are modeled by reducing the capacities of all links connected to the nodes by1

80%. And, terminal disruptions are modeled by randomly selecting a number of terminals and reducing their2

capacities by 80%; thus, the transfer times at the impacted terminals will increase. It should be noted that3

affected links, nodes, or terminals are selected based on their vulnerability, and the severity of the disruption4

can be captured by the amount of capacity that is reduced.5

6

Experimental Results7

The proposed solution methodology is implemented in Python using Jetbrains PyCharm 4.0.5, and the IBM8

ILOG CPLEX 12.6 solver is used to solve the mixed integer program. Experiments are run on a personal9

computer with Intel Core i7 3.20 GHz processor and 8.0 GB of RAM.10

11

Hypothetical Network12

To apply the SAA algorithm, the number of independent disruption-scenario samples (M ) is set to 100, the13

sample size (N ) is set to 1, and the number of large-size samples (N ′) is set to 1,000 for all three types of14

disruption. With these values, the SAA method will produce a number of candidate routes per commodity15

per OD pair but no more than 100 (M=100). Among these candidate routes, the optimal route is the one16

that yields the lowest optimality gap when each candidate route is applied to the 1,000 test scenarios (N ′ =17

1,000).18

Table 2(a) summarizes the input parameters and associated SAA results for the hypothetical net-19

work. The term “Gap” stands for the optimality gap as defined in Equation (35), and σgap stands for stan-20

dard deviation of the gap estimates as defined in Equation (36). In the case of link disruption, the average21

objective function value is $92,439.62, with an optimality gap of $540.87 and estimator standard deviation22

of $17.69. The associated computation time is 17.5 minutes. Similar information is presented for the node23

and terminal disruption cases. Among the three types of disruption, the node disruption case results in the24

highest objective function value, which indicates that it has the most negative impact on freight logistics.25

Conversely, the terminal disruption case has the least impact. This result is counterintuitive because one26

would expect the terminal disruption to have the highest impact since it serves as a hub in the freight trans-27

port network. This is due to the network structure which allows commodities to be shipped via road more28

efficiently and less costly. In other words, terminals handle only a small percentage of the shipments, and29

thus, their disruptions have minimal impact on the freight logistics.30

TABLE 2(a) Experimental Results for Hypothetical Network
Link Disruption Node Disruption Terminal Disruption

M 100 100 100
N ′ 1,000 1,000 1,000
CPU Time (min) 17.5 178.4 0.9
Objective Function Value (avg) $92,439.62 $93,152.09 $59,419.3
Gap $540.87 $390.09 $4.76
σgap $17.69 $3.80 $0.37

The corresponding optimal routes are presented in Table 2(b). Optimal routes are shown as a series31

of nodes in the direction of origin to destination. For example, the optimal route to ship commodity #132

between OD pair (1→ 15) in the event of link disruptions is: 1–3–5–8–12–13–15. Note that if a particular33

route does not have sufficient capacity to handle a particular shipment, then the remaining shipment is34

shipped via a second-best route. This is the case with commodity #3 between OD pair (1→ 11). There are35

two optimal routes: 1–2–6–14–13–11 (5% use this route) and 1–4–10–11 (95% use this route). It should36

be noted that the model places no restriction on the number of potential routes between each OD. Thus, a37

shipment could have several routes if there is insufficient capacity on the least-cost routes.38

It is observed that since the network has very few rail links, most of the shipments are shipped via39
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TABLE 2(b) Optimal Routes for Hypothetical Network
Optimal Routes

OD Pair Commodity Index Link Disruption Node Disruption Terminal Disruption

1→ 15 1 1–3–5–8–12–13–15 (100%) 1–4–10–11–15 (100%) 1–3–5–8–12–13–15 (100%)
2 1–3–2–6–14–15 (100%) 1–4–10–11–15 (100%) 1–4–10–11–15 (100%)
3 1–3–2–6–14–13–15 (100%) 1–4–10–11–15 (100%) 1–4–10–11–15 (100%)
4 1–3–2–6–14–15 (100%) 1–4–10–11–15 (100%) 1–4–10–11–15 (100%)

1→ 11 1 1–3–5–9–10–11 (100%) 1–4–10–11 (100%) 1–4–10–11 (100%)
2 1–3–5–9–10–11 (100%) 1–4–10–11 (100%) 1–4–10–11 (100%)
3 1–2–6–14–13–11 (5%) 1–4–10–11 (100%) 1–4–10–11 (100%)

1–4–10–11 (95%)

2→ 13 1 2–6–7–12–13 (98%) 2–1–4–10–11–13 (33%) 2–6–14–13 (100%)
2–6–14–13 (2%) 2–6–14–13 (67%)

2 2–3–5–8–12–13 (100%) 2–3–5–8–12–13 (73%) 2–6–14–13 (100%)
3 2–6–7–12–13 (100%) 2–3–5–8–12–13 (100%) 2–6–7–12–13 (100%)
4 2–3–5–8–12–13 (84%) 2–1–4–10–11–13 (65%) 2–6–14–13 (100%)

2–6–14–13 (16%)

15→ 4 1 15–13–12–8–5–3–4 (100%) 15–11–10–4 (100%) 15–11–10–4 (100%)
2 15–11–10–4 (100%) 15–11–10–4 (100%) 15–11–10–4 (100%)
3 15–13–12–8–5–3–4 (100%) 15–11–10–4 (100%) 15–11–10–4 (100%)
4 15–13–12–8–5–3–4 (100%) 15–11–10–4 (100%) 15–11–10–4 (100%)

14→ 3 1 14–6–7–5–3 (100%) 14–6–7–5–3 (100%) 14–6–2–3 (100%)
2 14–6–2–3 (100%) 14–6–7–5–3 (100%) 14–6–2–3 (100%)

highway links. This finding corresponds to actual freight flows where the majority of freights are shipped1

via road. Furthermore, when highway links are disrupted, then railway links and terminals are more likely2

to be used. Again, this is a logical and expected result. An interesting result that highlights the usefulness of3

the model can be seen in the case of a node disruption for commodity #4 between OD pair (2→ 13). There4

is one optimal route, but it only contains 65% of the shipment which means that the remaining 35% failed5

to reach its destination (i.e., unsatisfied demand). There are no unsatisfied demands under link and terminal6

disruption cases.7

8

Actual Network9

To understand the impact of disruptions on an actual road-rail intermodal network, several instances of each10

disruption type are considered. For link disruptions, four different instances are solved to investigate how the11

objective function value and computational time change with respect to the severity of the link disruption.12

The severity of the link disruption is modeled by the number of impacted links, which was set to 30, 60,13

100, and 200 for the four instances. The results for link disruption are summarized in the first part of Table14

3. The results indicate that increasing the number of OD pairs and commodities will increase computational15

efforts. Furthermore, for a particular number of OD pairs, the objective function value increases with the16

number of impacted links. The computational time is unaffected by the severity level.17

For node disruptions, the four instances considered have 5, 10, 20, and 40 nodes disrupted. As18

shown in the second part of Table 3, the objective function value and computational time increase with19

higher number of OD pairs and commodities. Unlike link disruption, the computational time is affected by20

the number of disrupted nodes. Specifically, there is a significant increase from 20 to 40 nodes for the 1021

OD pairs case (154.9 minutes to 720.2 minutes).22

For terminal disruptions, three instances are considered with 15, 30, and 44 terminals disrupted. The23

objective function value and computational time exhibit a similar trend with respect to disruption severity as24

the link and node disruption cases. Similar to the node disruption case, the computational time is affected25

by the number of disrupted terminals.26
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Collectively, the numerical results indicate that, under link and node disruptions, the majority of1

the commodity shipments are shipped via road-rail intermodal due to lower rail cost and due to the robust2

freight transport network. A similar finding is reported in a study done by Ishfaq (34) who concluded that3

the layout of the U.S. road-rail intermodal network and location of intermodal terminals provide sufficient4

redundancies to handle disruptions. When intermodal terminals are disrupted, the model indicates that5

commodities will be shipped via road directly. This result is expected since highway network is redundant6

and robust, as well as cost-effective.7

TABLE 3 Experimental Results for Actual Network
Link Disruption Node Disruption Terminal Disruption

OD |K| Impacted
Link #

Obj. Func.
($, thousands)

CPU
(min)

Impacted
Node #

Obj. Func.
($, thousands)

CPU
(min)

Impacted
Terminal #

Obj. Func.
($, thousands)

CPU
(min)

5 9 30 556.4 29.8 5 557.7 29.9 15 550.2 29.4
60 562.6 29.9 10 566.0 29.3 30 560.6 29.5

100 573.9 29.9 20 604.1 33.6 44 651.9 36.5
200 650.5 29.9 40 640.9 115.1

10 21 30 959.8 146.8 5 942.2 142.7 15 930.3 147.0
60 965.9 146.8 10 966.9 141.7 30 959.7 143.5

100 979.3 142.6 20 1,015.1 154.9 44 1,077.8 173.2
200 1,085.1 146.2 40 1,061.4 720.2

20 43 30 1,478.8 484.1 5 1,461.2 486.2 15 1,481.3 483.5
60 1,484.9 487.8 10 1,505.8 479.6 30 1,534.3 493.7

100 1,500.9 486.7 20 1,558.4 528.2 44 1,705.8 636.5
200 1,625.2 485.5 40 1,609.5 1,204.9

50 87 30 3,885.8 1,937.8 5 3,870.7 1,937.2 15 3,959.0 1,953.7
60 3,895.9 1,930.4 10 3,983.3 1,945.6 30 4,137.3 2,036.3

100 3,952.3 1,926.4 20 4,062.6 2,007.6 44 * *
200 4,173.1 1,956.0 40 * *

*Program terminated due to memory limitation

Figure 3(a) illustrates how the optimal route generated by the model for a particular commodity8

going from Greensboro, NC to Dallas, TX under node disruptions compares with an actual route that a9

carrier would use. The left part of Figure 3(a) shows the optimal route generated by the model (shown in10

red), and the right part shows the route that a freight carrier would use (35). By inspection, it is clear that11

the two routes are very similar to each other. However, there is one notable difference, and that is the model12

indicates road-rail intermodal to be optimal whereas the freight carrier chooses road-only. This discrepancy13

can be attributed to the fact that the carrier does not consider the potential node disruptions in the network.14

Figure 3(b) illustrates how the optimal route generated by the model for a particular commodity15

going from Miami, FL to Houston, TX under link disruptions. By inspection, it is clear that the carrier16

chooses the route based on minimum travel time. The model, on the other hand, recognizes the potential17

link disruptions in the network and thereby chooses an intermodal route that avoids using the U.S. interstates18

(I-10 and I-12) through Louisiana. This is because historically this area is vulnerable to hurricanes, such as19

Rita and Katrina. This result illustrates the importance of considering network disruptions when selecting a20

route for multicommodity freight in an intermodal network.21
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(a)1

(b)2

FIGURE 3 Optimal routes for selected OD pairs: (a) Greensboro – Dallas and (b) Miami – Houston.3

4

CONCLUSION5

This paper developed a new stochastic mixed integer programming model (SMIFR) to determine the optimal6

routes for delivering multicommodity freight in an intermodal freight network that is subject to disruptions7

(e.g., link, node, and terminal disruptions). To solve this model, the Sample Average Approximation (SAA)8

algorithm is adopted. The model and solution algorithm was tested on a hypothetical 15-node network and9

an actual intermodal network in the Gulf Coast, Southeastern and mid-Atlantic regions of the U.S.10

The numerical experiments indicated that the model is capable of finding the optimal solutions for11

both small and large networks. The model runtime for a hypothetical 15-node network was reasonable (less12

than 3 hours for all instances). Naturally, the model runtime will increase as the network gets larger, as13

well as for the number of OD pairs and commodities. While the computational time was affected by the14

severity level of node and terminal disruptions, it was unaffected by link disruption severity. The model15

results indicated that under disruptions, goods in the study region should be shipped via road-rail intermodal16

due to lower rail cost and due to the built-in redundancy of the freight transport network. Furthermore, the17

model indicated that for a particular number of OD pairs, the total system cost will increase as the number18

of disrupted elements increases. The routes generated by the model are shown to be more robust than those19

typically used by freight carriers because they are often selected without consideration of potential network20

disruptions.21

22
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