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Abstract 1 

This paper investigates truck-involved crashes to determine the statistically significant factors that 2 

contribute to injury severity under different weather conditions.  The analysis uses crash data from 3 

the state of Ohio between 2011 and 2015 available from the Highway Safety Information System.  To 4 

determine if weather conditions should be considered separately for truck safety analyses, 5 

parameter transferability tests are conducted; the results suggest that weather conditions should be 6 

modeled separately with a high level of statistical confidence.  To this end, three separate mixed logit 7 

models are estimated for three different weather conditions: normal, rain and snow.  The estimated 8 

models identify a variety of statistically significant factors influencing the injury severity.  Different 9 

weather conditions are found to have different contributing effects on injury severity in truck-10 

involved crashes.  Rural, rear-end and sideswipe crash parameters were found to have significantly 11 

different levels of impact on injury severity.  Based on the findings of this study, several 12 

countermeasures are suggested: 1) safety and enforcement programs should focus on female truck 13 

drivers, 2) a variable speed limit sign should be used to lower speeds of trucks during rainy condition, 14 

and 3) trucks should be restricted or prohibited on non-interstates during rainy and snowy 15 

conditions.  These countermeasures could reduce the number and severity of truck-involved crashes 16 

under different weather conditions. 17 

 18 

Keywords: Truck-involved crash, injury severity, weather condition, random parameter logit, 19 

freight.  20 
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1.  Introduction 21 

 Interest in identifying factors that affect truck transportation safety in the U.S. has increased 22 

in recent years due to the higher number of fatalities from truck-involved crashes, a byproduct of the 23 

growing domestic e-commerce and international trade (Ahmed et al., 2018; Al-Bdairi and Hernandez, 24 

2017; Cerwick et al., 2014; Chang and Chien, 2013; Chen and Chen, 2011; Islam et al., 2014; Islam and 25 

Hernandez, 2013a,b; Islam and Ozkul, 2019; Lyman and Braver, 2003; Uddin and Huynh, 2017, 2018; 26 

Zaloshnja and Miller, 2004).  In 2015, there were 32,166 fatal crashes on U.S. roadways, of which, 27 

3,598 (11.2%) involved at least one truck.  The number of fatalities in the U.S. when a truck is involved 28 

in a crash in 2015 during inclement weather, such as rain, snow, sleet, hail, fog, and severe crosswinds 29 

was 458 (Federal Motor Carrier Safety Administration, 2017).  Compared to passenger vehicles, 30 

trucks are more vulnerable to crashes in inclement weather due to their larger size and higher center 31 

of gravity.  At the state level, Ohio had a very high number of fatal truck-involved crashes (156) in 32 

2015 (Federal Motor Carrier Safety Administration, 2017). 33 

 This study is focused on investigating the relationship between crash factors and crash injury 34 

severity, based on different weather conditions which have not been studied previously.  Past studies 35 

have indicated that roadway weather conditions play a significant role in injury severity from truck-36 

involved crashes (e.g., Anderson and Hernandez, 2017; Cerwick et al., 2014; Chen and Chen, 2011; 37 

Dong et al., 2015; Islam et al., 2014; Islam and Hernandez, 2013b; Khorashadi et al., 2003; Lemp et 38 

al., 2011; Li et al., 2017; Naik et al., 2016; Osman et al., 2016; Pahukula et al., 2015; Uddin and Huynh, 39 

2017, 2018).  However, these studies have not examined the impact of weather conditions via 40 

separate models for different weather conditions.  The interaction between variables is complex, 41 

which can vary significantly across different weather conditions.  For instance, while the aggregate 42 

model may indicate that daylight decreases injury severity of truck drivers, its effect may vary under 43 

different weather conditions.  That is, the injury severity of drivers may be less severe under daylight 44 

and rainy conditions (Pahukula et al., 2015), but more severe under daylight and snowy conditions 45 
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(Forkenbrock and Hanley, 2003).  As such, disaggregating truck-involved crashes by weather 46 

conditions can provide additional insights to traffic safety engineers and transportation planners 47 

about the effect of weather conditions on truck-involved crashes, and thereby, enabling them to 48 

implement appropriate countermeasures.  Furthermore, in recent years more and more researchers 49 

have adopted the use of separate models in analyzing truck-involved crashes:  rural and urban (Chen 50 

and Chen, 2011; Islam et al., 2014), time of day (Behnood and Mannering, 2019; Pahukula et al., 51 

2015), roadway classification (Anderson and Hernandez, 2017), and lighting condition (Uddin and 52 

Huynh, 2017). 53 

 As for methodology, most of the previous studies that examined truck-involved crashes 54 

modeled injury severity using logit or probit models (e.g., Al-Bdairi et al., 2017; Behnood and 55 

Mannering, 2019; Cerwick et al., 2014; Chen and Chen, 2011; Duncan et al., 1998; Islam and 56 

Hernandez, 2013a,b; Islam et al., 2014; Islam 2015; Khorashadi et al., 2005; Lemp et al., 2011; Naik 57 

et al., 2016; Pahukula et al., 2015; Taylor et al., 2017; Uddin and Huynh, 2017, 2018; Wei et al., 2017).  58 

Some of these studies considered the injury severity of the driver as the dependent variable while 59 

others considered the injury severity of the most severely injured occupant.   In this study, the injury 60 

severity of the truck driver is chosen to be the dependent variable.  Furthermore, mixed logit (random 61 

parameters logit) modeling is used to determine the contributing factors and to account for the 62 

unobserved heterogeneity.  Mixed logit models are statistically superior to traditional fixed 63 

parameters logit models and they require less detailed crash-specific data than that of fixed 64 

parameters models (Anastasopoulos and Mannering, 2011). 65 

The objective of this study is to investigate the factors that influence injury severity of drivers 66 

from truck-involved crashes under three different weather conditions (at the time of the crash): 67 

normal, rain and snow.  The analysis uses crash data from the state of Ohio between 2011 and 2015 68 

available from the Highway Safety Information System (HSIS).  To the best of the authors’ knowledge, 69 
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this study is the first to analyze driver injury severity in truck-involved crashes under different 70 

weather conditions. 71 

 72 

2.  Previous research 73 

 A number of studies have explored injury severity of truck-involved crashes.  The research 74 

topics include determining contributing crash factors, interactions between the factors, and 75 

comparison of methodologies.  Readers are referred to the review paper by Savolainen et al. (2011) 76 

for more information about these research topics.  Research on the effect of weather conditions on 77 

driver injury severity in truck-involved crashes is limited.  Young and Liesman (2007) used 1994 to 78 

2003 Wyoming truck crash data to examine the relationship between wind speed and truck 79 

overturning via a binary logit model.  Their modeling results indicated that wind speed could be used 80 

as a predictor of truck overturning in a crash.  However, their study did not explore the effect of wind 81 

speed on injury severity.  Kecojevic and Radomsky (2004) used 1995 to 2002 fatal crash data from 82 

the Mine Safety and Health Administration and found that inclement weather conditions and truck-83 

involved crashes are related.  The authors performed percentage analysis to determine the impact of 84 

different crash types and crash reasons.  Naik et al. (2016) investigated truck crash injury severity in 85 

Nebraska using an aggregated data set (15-minute weather station data combined with crash and 86 

roadway data) from 2009 to 2011.  The authors used both ordered and multinomial logit models.  87 

They found that inclement weather conditions had an effect on truck-involved crash injury severity.  88 

Specifically, the greater the recorded wind speed and rain, the more severe the injury in crashes. 89 

 The aforementioned studies indicated that weather conditions have a significant impact on 90 

truck-involved crash injury severity; however, they have not examined how the factors contribute to 91 

the injury severity under different weather conditions.  This study aims to fill this gap in the literature 92 

by developing a mixed logit model for each type of weather condition. 93 

 94 
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3.  Data description 95 

The data used in this study are highway patrol reported crashes from the state of Ohio 96 

between 2011 and 2015, available from the Highway Safety Information System (HSIS) database.  97 

Using the vehicle type attribute, crash data were filtered to include only crashes involving trucks.  98 

Specifically, only crashes involving single-unit trucks, truck trailers, tractor semi-trailers and tractor 99 

doubles were considered.  Note that both at-fault and no-fault (i.e., non-contributing) truck-involved 100 

crashes are included in the dataset.  Also, only crashes which occurred along roadway segments were 101 

considered.  That is, intersection crashes were excluded.  The reason is because factors that affect 102 

crashes along segments and crashes at intersections are significantly different according to Vogt and 103 

Bared (1998).  Therefore, to properly capture the impact of location type, segment and intersection 104 

crashes need to be modeled separately.  Furthermore, in the U.S., there were a larger number of fatal 105 

(2,649) and injury (50,000) truck-involved crashes that occurred along roadway segments in 2015 106 

than at intersections (Federal Motor Carrier Safety Administration, 2017). 107 

The resulting dataset has three weather conditions: normal, rain and snow.  These three 108 

weather conditions were considered due to their sample shares.  Other conditions such as fog and 109 

heavy wind had very low sample shares, and thus, not sufficient for model development.  Each 110 

observation in the dataset includes the injury severity of the driver of the truck along with driver, 111 

crash, vehicle, roadway and temporal characteristics. 112 

The final dataset consists of 49,248 truck-involved crashes.  Of this total, 40,459 occurred 113 

during normal condition, 4,866 occurred during rainy condition and 3,923 occurred during snowy 114 

condition.  The injury severity of the crash data in the HSIS database is categorized into five distinct 115 

levels: fatal (105 or 0.2%), disabling injury (424 or 0.9%), evident injury (3,328 or 6.8%), possible 116 

injury (1,665 or 3.4%) and no injury (43,726 or 88.7%).  As done in other studies (Chen and Chen, 117 

2011; Islam et al., 2014; Uddin and Ahmed, 2018; Uddin and Huynh, 2017, 2018), to ensure sufficient 118 

number of observations for each injury severity level, the above five injury severity levels were 119 
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consolidated into three levels: major injury (fatality and disabling injury), minor injury (evident 120 

injury and possible injury) and no injury.  Table 1 presents the injury severity level frequency and 121 

percentage distribution by weather conditions. 122 

 123 

Table 1 124 
Injury severity level frequency and percentage distribution by weather conditions. 125 

Weather condition Total observation Major injury (%) Minor injury (%) No injury (%) 
Normal 40,459 443 (1.1) 4,023 (9.9) 35,993 (89.0) 
Rain 4,866 47 (1.0) 511 (10.5) 4,308 (88.5) 
Snow 3,923 39 (1.0) 459 (11.7) 3,425 (87.3) 

 126 
Table 2 127 
Descriptive statistics of variables by weather conditions. 128 

Meaning of variable Normal  Rain  Snow 

 Mean SD†  Mean SD†  Mean SD† 

Driver characteristics         

Male (1 if male driver, 0 otherwise) 0.96 0.20  0.96 0.20  0.96 0.20 

Restraint (1 if used lap and/or shoulder belt, 0 otherwise) 0.94 0.23  0.94 0.23  0.95 0.21 

         

Crash characteristics         

Rural (1 if rural location, 0 otherwise) 0.38 0.48  0.34 0.47  0.48 0.50 

Urban (1 if urban location, 0 otherwise) 0.62 0.48  0.66 0.47  0.52 0.50 

Curve (1 if curved highway, 0 otherwise) 0.10 0.30  0.15 0.36  0.11 0.32 

Rear-end (1 if rear-end collision, 0 otherwise) 0.19 0.39  0.19 0.39  0.21 0.41 

Sideswipe (1 if sideswipe collision, 0 otherwise) 0.32 0.47  0.32 0.47  0.34 0.47 

Object (1 if collision with an object, 0 otherwise) 0.14 0.35  0.20 0.40  0.19 0.39 

MVIT (1 if collision with a motor vehicle in transport, 0 otherwise) 0.63 0.48  0.64 0.48  0.66 0.48 

Ran off (1 if ran off road to the right or left, 0 otherwise) 0.10 0.30  0.16 0.37  0.18 0.38 

Daylight (1 if daylight, 0 otherwise) 0.77 0.42  0.65 0.48  0.61 0.49 

Dark-lighted (1 if dark with streetlights, 0 otherwise) 0.08 0.27  0.15 0.36  0.12 0.33 

Dark-unlighted (1 if dark without streetlights, 0 otherwise) 0.13 0.34  0.18 0.38  0.25 0.43 

         

Vehicle characteristics         

Single-unit truck (1 if single-unit truck, 0 otherwise) 0.28 0.45  0.26 0.44  0.25 0.43 

Truck trailer (1 if truck trailer, 0 otherwise) 0.11 0.31  0.11 0.31  0.08 0.26 

Truck semi-trailer (1 if truck semi-trailer, 0 otherwise) 0.59 0.49  0.61 0.49  0.64 0.48 

         

Roadway characteristics         

Speed1 (1 if speed limit ≤ 40 mph, 0 otherwise) 0.21 0.41  0.20 0.40  0.13 0.34 

Speed2 (1 if speed limit 45 mph–60 mph, 0 otherwise) 0.38 0.49  0.37 0.48  0.31 0.46 

Speed3 (1 if speed limit ≥ 65 mph, 0 otherwise) 0.41 0.49  0.43 0.50  0.56 0.50 

Lane1 (1 if number of lanes < 4, 0 otherwise) 0.28 0.45  0.24 0.43  0.22 0.41 

Lane2 (1 if number of lanes ≥ 4, 0 otherwise) 0.72 0.45  0.76 0.43  0.78 0.41 

AADT1 (1 if AADT ≤ 15,000, 0 otherwise) 0.37 0.48  0.33 0.47  0.30 0.46 
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AADT2 (1 if 15,000 < AADT ≤ 50,000, 0 otherwise) 0.38 0.49  0.38 0.48  0.46 0.50 

AADT3 (1 if 50,000 < AADT ≤ 100,000, 0 otherwise) 0.15 0.36  0.17 0.38  0.17 0.37 

AADT4 (1 if AADT > 100,000, 0 otherwise) 0.10 0.29  0.12 0.33  0.07 0.25 

Asphalt (1 if asphaltic concrete surface, 0 otherwise) 0.95 0.23  0.95 0.22  0.94 0.25 

Interstate (1 if interstate highway, 0 otherwise) 0.50 0.49  0.54 0.50  0.62 0.49 

         

Temporal characteristics         

Time1 (1 if time 7 AM–9:59 AM, 0 otherwise) 0.17 0.38  0.17 0.37  0.18 0.38 

Time2 (1 if time 10 AM–3:59 PM, 0 otherwise) 0.44 0.50  0.37 0.48  0.38 0.49 

Time3 (1 if time 4 PM–6:59 PM, 0 otherwise) 0.16 0.37  0.16 0.37  0.12 0.32 

Time4 (1 if time 7 PM–6:59 AM, 0 otherwise) 0.23 0.42  0.30 0.46  0.32 0.47 

Weekday (1 if weekday, 0 otherwise) 0.89 0.32  0.87 0.33  0.78 0.42 

Weekend (1 if weekend, 0 otherwise) 0.11 0.32  0.13 0.33  0.22 0.42 
†SD = Standard Deviation 129 

 130 

Variable descriptions and summary statistics by weather conditions are presented in Table 131 

2.  It should be noted that the HSIS database does not include all possible factors that contribute to 132 

injury severity of the truck drivers.  Hence, the variables/factors considered in this study are limited 133 

to those available in the HSIS database. 134 

 135 

4.  Methodology 136 

  Mixed logit models are used to provide a better understanding of the interaction between 137 

crash factors found in the dataset and unobserved heterogeneity.  Previous research has shown that 138 

models accounting for unobserved heterogeneity (i.e., mixed logit models) can be statistically 139 

superior.  These models can account for observation-specific variations in the effects of explanatory 140 

variables.  For that reason, mixed logit models are used more frequently in crash injury severity 141 

modeling (Anastasopoulos and Mannering, 2011; Anderson and Hernandez, 2017; Chen et al., 2019; 142 

Dong et al., 2018; Ma et al., 2015; Milton et al., 2008).  The following subsections present the details 143 

of mixed logit modeling, estimation of marginal effects of the factors, and parameter transferability 144 

tests. 145 

 146 

 147 
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4.1. Mixed logit model 148 

   Following the methodology presented in previous research (i.e., Milton et al., 2008; Islam et 149 

al., 2014; Uddin and Huynh, 2017), the relationship between the injury severity variable and the 150 

explanatory variables is expressed as shown in Eq. (1). 151 

𝑌𝑖𝑛 = 𝛽𝑖𝑋𝑖𝑛 + 𝜖𝑖𝑛 (1) 

where 𝑌𝑖𝑛 is the variable representing injury severity level 𝑖 (𝑖 ∈ 𝐼 denotes injury severity levels, i.e., 152 

major injury, minor injury and no injury) of a truck driver 𝑛, 𝑋𝑖𝑛 is the injury severity explanatory 153 

variables/factors, 𝛽𝑖 is the parameter to be estimated for each injury severity level 𝑖, and 𝜖𝑖𝑛 is the 154 

error term to capture the effects of the unobserved characteristics.  If the error term is independently 155 

and identically distributed with generalized extreme value distribution, then the resulting model is a 156 

multinomial logit model with the choice probability as shown in Eq. (2). 157 

𝑃𝑛(𝑖) =  
exp [𝛽𝑖𝑋𝑖𝑛]

∑ exp [𝛽𝑖𝑋𝑖𝑛]𝑖∈𝐼
 

(2) 

where 𝑃𝑛(𝑖) is the probability of injury severity level 𝑖 for driver 𝑛. 158 

 To capture the effects of unobserved heterogeneity due to randomness associated with some 159 

of the factors necessary to understand injury sustained by the drivers, the above choice probability 160 

is extended to the mixed logit model formulation as shown in Eq. (3) (Train, 2009). 161 

𝑃𝑛(𝑖|𝜙) =  ∫
exp [𝛽𝑖𝑋𝑖𝑛]

∑ exp [𝛽𝑖𝑋𝑖𝑛]𝑖∈𝐼
 𝑓(𝛽𝑖|𝜙)𝑑𝛽𝑖 

(3) 

where 𝑃𝑛(𝑖|𝜙) is the probability of injury severity level 𝑖 conditional on 𝑓(𝛽𝑖|𝜙), 𝑓(𝛽𝑖|𝜙) is the density 162 

function of 𝛽𝑖 and 𝜙 is the parameter vector with known density function.  Eq. (3) accounts for 163 

variations of the effects of the factors 𝑋𝑖𝑛, related to a specific injury severity level, in truck-involved 164 

crash probabilities for each weather condition model, where 𝛽𝑖 is determined using the density 165 

function 𝑓(𝛽𝑖|𝜙).  The mixed logit probabilities are calculated using weighted average for different 166 

values of 𝛽𝑖 across observations.  Typically, some elements of 𝛽𝑖 are fixed and some are randomly 167 

distributed with specific statistical distribution.  If the variance of 𝜙 is statistically significant, then 168 
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the modeled injury severity levels vary with respect to 𝑋 across observations (Washington et al., 169 

2011).  In this study, maximum likelihood estimation is performed through a simulation-based 170 

approach to overcome the computation complexity of estimating the parameters 𝛽𝑖 of the mixed logit 171 

models.  The simulation procedure requires Halton draws (Halton, 1960). 172 

 To test the overall model fit, the pseudo R-squared (𝜌2) value is used and is calculated using 173 

Eq. (4). 174 

𝜌2 = 1 − 𝐿𝐿(𝛽)/𝐿𝐿(0) (4) 

where 𝐿𝐿(0) is the log-likelihood at zero and 𝐿𝐿(𝛽) is the log-likelihood at convergence. 175 

 176 

4.2. Marginal effects 177 

 To determine the effect of a change in explanatory variable on the probability of injury 178 

severity level, marginal effects are calculated.  The marginal effects for indicator variables are 179 

computed, as the difference in the estimated probabilities when the indicator variables change from 180 

0 to 1, as shown in Eq. (5).  Note that the marginal effects measure the discrete change (i.e., how 181 

predicted probabilities change as the explanatory variable changes from 0 to 1). 182 

𝑀𝑋𝑖𝑛𝑘

𝑃𝑖𝑛 = 𝑃𝑖𝑛[given 𝑋𝑖𝑛𝑘 = 1] − 𝑃𝑖𝑛[given 𝑋𝑖𝑛𝑘 = 0] (5) 

where 𝑃𝑖𝑛 is the probability of injury severity level 𝑖 for driver 𝑛 (i.e., Eq. (3)) and 𝑋𝑖𝑛𝑘 is the 𝑘-th 183 

explanatory variable associated with injury severity level 𝑖 for driver 𝑛. 184 

 185 

4.3. Model separation 186 

 Two different tests were conducted to validate that three separate weather condition models, 187 

one for each type of weather condition, is necessary.  The first test is the log-likelihood ratio (LR) test 188 

between the full model and the weather condition models as shown in Eq. (6) (Washington et al., 189 

2011). 190 
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𝐿𝑅𝑓𝑢𝑙𝑙 = −2[𝐿𝐿(𝛽𝑓𝑢𝑙𝑙) − 𝐿𝐿(𝛽𝑛𝑜𝑟𝑚𝑎𝑙) − 𝐿𝐿(𝛽𝑟𝑎𝑖𝑛) − 𝐿𝐿(𝛽𝑠𝑛𝑜𝑤)] (6) 

where 𝐿𝐿(𝛽𝑓𝑢𝑙𝑙) is the log-likelihood at convergence for the full model, 𝐿𝐿(𝛽𝑛𝑜𝑟𝑚𝑎𝑙) is the log-191 

likelihood at convergence for the normal condition model, 𝐿𝐿(𝛽𝑟𝑎𝑖𝑛) is the log-likelihood at 192 

convergence for the rain model, and 𝐿𝐿(𝛽𝑠𝑛𝑜𝑤) is the log-likelihood at convergence for the snow 193 

model.  Note that log-likelihood values of the weather condition models have the same variables and 194 

specification as the full model.  The 𝐿𝑅 statistic is 𝜒2 distributed, with degrees of freedom (𝑑𝑓) equal 195 

to the summation of the number of estimated parameters in all three models minus the number of 196 

estimated parameters in the full model. 197 

 The second test is the parameter transferability test articulated in Washington et al. (2011). 198 

It is based on the LR test and is used to determine if weather conditions are to be modeled separately.  199 

Its test statistic is computed using Eq. (7). 200 

𝐿𝑅𝑎𝑏
= −2[𝐿𝐿(𝛽𝑎𝑏) − 𝐿𝐿(𝛽𝑎)] (7) 

where 𝐿𝐿(𝛽𝑎𝑏) is the log-likelihood at convergence of weather condition model 𝑎 using the data from 201 

model 𝑏 and 𝐿𝐿(𝛽𝑎) is the log-likelihood at convergence of model 𝑎.  The above test statistic has 𝑑𝑓 202 

equals to the number of estimated parameters in 𝛽𝑎𝑏. 203 

 204 

5.  Results 205 

 The statistical software NLOGIT version 5 was used to perform the tests for model separation 206 

and to estimate the mixed-logit models (Econometric Software, Inc., 2019).  The log-likelihood ratio 207 

test yielded a test statistic of 801.78 with 26 degrees of freedom (p < 0.001).  These values suggest 208 

that weather condition models should be modeled separately with over 99% confidence.  209 

Subsequently, the parameter transferability test was conducted.  Table 3 shows the results of this 210 

test.  Each test statistic and its corresponding degrees of freedom suggest that weather condition 211 

models for truck-involved crashes should be modeled separately with well over 99% confidence. 212 

 213 
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Table 3 214 
Test statistics, degrees of freedom and p-value of parameter transferability test. 215 

a b 

 Normal Rain Snow 

Normal 0 51.46, df = 15 (p < 0.001) 38.09, df = 15 (p < 0.001) 

Rain 414.12, df = 10 (p < 0.001) 0 32.92, df = 10 (p < 0.001) 

Snow 664.08, df = 13 (p < 0.001) 37.30, df = 13 (p < 0.001) 0 

 216 

A separate model was estimated for each weather condition: normal, rain and snow.  Each 217 

model predicts three levels of injury severity: major injury, minor injury and no injury.  A simulation-218 

based maximum likelihood method was utilized to estimate parameters 𝛽𝑖 for the mixed logit models.  219 

To estimate random parameters, the Normal, Lognormal, Triangular and Uniform distributions were 220 

considered.  Only the Normal distribution was found to be statistically significant.  This finding is 221 

consistent with previous studies where random parameters were considered (e.g., Milton et al., 2008; 222 

Morgan and Mannering, 2011; Behnood and Mannering, 2017a,b).  Hence, the Normal distribution 223 

was used in the random parameters model.  In addition, 500 Halton draws were utilized in the 224 

simulation procedure.  During the model development process, variables were retained in the 225 

specification if they have t-statistics corresponding to the 90% confidence level or higher on a two-226 

tailed t-test.  The random parameters were retained if their standard deviations have t-statistics 227 

corresponding to the 90% confidence level or higher.  Model estimation results are presented in 228 

Tables 4 through 6 along with marginal effects of all the variables included in the models.  Note that 229 

only two constant terms can be used in the models since there are three injury severity levels.  The 230 

estimation results yielded a 0 for one of the two constant terms used in the model specification.  Other 231 

studies which performed similar analyses also reported having a 0 coefficient for one of the constant 232 

terms (e.g., Pahukula et al., 2015; Behnood and Mannering, 2015).  For the above reason, there is only 233 

one constant term in the final estimated models under three weather conditions. 234 

The 𝜌2 values in Tables 4 through 6 indicate very good overall model fit with the values 235 

exceeding 0.60 in all three models.  A total of 5 parameters were found to be statistically significant 236 
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as random parameters among the three estimated mixed logit models.  All of these random 237 

parameters were shown to be significantly different from zero with at least 90% confidence.  These 238 

random variables account for unobserved heterogeneity. 239 

Table 4 shows the model estimation results for crashes under normal condition.  A positive 240 

coefficient value for an explanatory variable means it is positively associated with the injury severity 241 

level and increases the propensity of injury severity level with an increase in its magnitude.  However, 242 

random variable results (mean and standard deviation) have a different interpretation.  They 243 

indicate that one portion of the observations may have a higher probability of an injury severity level 244 

while the rest of the observations have a lower probability of that injury severity level, and vice-245 

versa.  For example, the parameter weekend (specific to minor injury) was found to be random and 246 

had a mean of −1.91 and standard deviation of 2.54.  With these values, the Normal distribution curve 247 

indicates that 77.4% of the truck-involved crashes that occurred during the daylight under normal 248 

condition had a higher probability of drivers sustaining a minor injury, while the rest (100 – 77.4 = 249 

22.6%) of the crashes had a lower probability of drivers sustaining a minor injury.  In the following, 250 

results of the random parameters are reported without the mean and standard deviation.  Also, 251 

statements regarding the “rest of the crashes” are omitted since they can be deduced from the 252 

reported findings. 253 

 254 

Table 4 255 
Parameter estimates and marginal effects for truck-involved crashes under normal condition. 256 

Variable Coefficient t-statistic p-value Marginal effects 

 
   Major 

injury 
Minor 
injury 

No  
injury 

Defined for major injury       

Male −4.49 −44.53 0.000 −0.048 0.004 0.044 

Rear-end −0.58 −5.43 0.000 −0.003 0.000 0.003 

Dark-lighted 0.42 3.51 0.001 0.001 −0.000 −0.001 

Time1 0.71 7.21 0.000 0.004 −0.000 −0.004 

       

Defined for minor injury       

Constant −1.30 −10.06 0.000    

Rural 1.24 15.32 0.000 −0.000 0.011 −0.011 
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Single-unit truck −0.51 −4.88 0.000 0.000 −0.026 0.026 

Lane2 (standard deviation of parameter 
distribution) 

−1.90 (3.67) −5.09 (9.00) 0.000 (0.000) −0.000 0.020 −0.020 

Asphalt −0.74 −9.30 0.000 0.001 −0.035 0.034 

Weekend (standard deviation of 
parameter distribution) 

−1.91 (2.54) −7.42 (10.52) 0.000 (0.000) −0.000 0.021 −0.021 

       

Defined for no injury       

Sideswipe −1.07 −15.53 0.000 0.003 0.015 −0.018 

Object 0.31 4.80 0.000 −0.001 −0.004 0.005 

Speed2 1.52 13.95 0.000 −0.001 −0.008 0.009 

       

Model statistics       

Number of observations 40,459      

Log-likelihood at zero, 𝐿𝐿(0) −44,448.77      

Log-likelihood at convergence, 𝐿𝐿(𝛽) −14,687.87      

𝜌2 = 1 − 𝐿𝐿(𝛽)/𝐿𝐿(0) 0.67      

 257 

The other significant random parameter for the normal condition model is lane2.  Specific to 258 

minor injury, about 69.8% of the crashes occurring on 4 or more lanes (both directions) highway 259 

under normal condition had a higher probability of drivers sustaining a minor injury. 260 

 261 

Table 5 262 
Parameter estimates and marginal effects for truck-involved crashes under rainy condition. 263 

Variable Coefficient t-statistic p-value Marginal effects 

    
Major 
injury 

Minor 
injury 

No  
injury 

Defined for major injury       

Male −1.70 −10.96 0.000 −0.032 0.002 0.030 

Speed3 0.70 2.38 0.018 0.004 −0.001 −0.003 

       

Defined for minor injury       

Sideswipe 0.92 3.72 0.000 −0.000 0.010 −0.010 

Single-unit truck (standard deviation of 
parameter distribution) 

−2.94 (3.35) −2.83 (3.60) 0.005 (0.000) −0.000 0.033 −0.033 

Interstate −0.50 −1.75 0.081 0.000 −0.003 0.003 

Weekend −0.69 −3.20 0.001 0.000 −0.020 0.020 

       

Defined for no injury       

Constant 1.90 8.12 0.000    

Rural −1.26 −5.54 0.000 0.004 0.014 −0.018 

Daylight −0.36 −2.18 0.029 0.001 0.006 −0.007 

       

Model statistics       

Number of observations 4,866      

Log-likelihood at zero, 𝐿𝐿(0) −5,345.85      

Log-likelihood at convergence, 𝐿𝐿(𝛽) −1,844.82      

𝜌2 = 1 − 𝐿𝐿(𝛽)/𝐿𝐿(0) 0.65      
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 264 

 Table 5 shows the model estimation results for crashes under rainy condition.  The significant 265 

random parameter for the rainy condition model is single-unit truck.  Specific to minor injury, about 266 

81.0% of the crashes involving single-unit trucks under rainy condition had a higher probability of 267 

drivers sustaining a minor injury. 268 

 269 

Table 6 270 
Parameter estimates and marginal effects for truck-involved crashes under snowy condition. 271 

Variable Coefficient t-statistic p-value Marginal effects 

    
Major 
injury 

Minor 
injury 

No  
injury 

Defined for major injury       

Curve (standard deviation of parameter 
distribution) 

0.78 (1.53) 2.42 (1.75) 0.016 (0.080) 0.003 −0.000 −0.003 

Single-unit truck −1.66 −3.77 0.000 −0.013 0.001 0.012 

Time3 0.59 1.79 0.073 0.003 −0.000 −0.003 

       

Defined for minor injury       

Male (standard deviation of parameter 
distribution) 

−1.32 (2.00) −1.42 (2.47) 0.155 (0.014) −0.001 0.087 −0.086 

Truck trailer −1.05 −1.93 0.054 0.000 −0.007 0.007 

Interstate 1.08 1.92 0.055 −0.001 0.009 −0.008 

       

Defined for no injury       

Constant 4.53 8.15 0.000    

Urban −0.99 −3.19 0.001 0.006 0.016 −0.022 

Rear-end −1.16 −3.57 0.000 0.008 0.024 −0.032 

Object 1.11 2.70 0.007 −0.002 −0.011 0.013 

       

Model statistics       

Number of observations 3,923      

Log-likelihood at zero, 𝐿𝐿(0) −4,309.86      

Log-likelihood at convergence, 𝐿𝐿(𝛽) −1,594.62      

𝜌2 = 1 − 𝐿𝐿(𝛽)/𝐿𝐿(0) 0.63      

 272 

Table 6 shows the model estimation results for crashes under snowy condition.  The 273 

significant random parameters for the snowy condition model are curve and male.  Specific to major 274 

injury, about 30.5% of the crashes occurred on curved highway segment under snowy condition had 275 

a higher probability of drivers sustaining major injury.  Specific to minor injury, about 74.5% of the 276 
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crashes where drivers were male under snowy condition had a higher probability of sustaining minor 277 

injury. 278 

 279 

6.  Discussion 280 

Separate models of injury severity levels by weather conditions provide valuable insights 281 

about contributing factors affecting the injury severity of truck-involved crashes.  The model results 282 

suggest major differences in both the combination and magnitude of impact of variables.  For 283 

example, single-unit truck drivers were found to be associated with decreased probability of minor 284 

injury under normal condition, increased probability of minor injury under rainy condition and 285 

decreased probability of major injury under snowy condition.  Some variables were found to be 286 

significant in one weather condition but not in others.  For example, the curve variable is only 287 

significant in contributing to major injury under snowy condition.  Table 7 compares the effects of 288 

the statistically significant factors on injury severity by weather conditions. 289 

 290 

6.1. Driver characteristics 291 

 Male drivers were found to have lower probability of major injuries under normal and rainy 292 

conditions; however, they were found to have higher probability of minor injury under snowy 293 

condition.  Specifically, compared to female drivers, the probability of sustaining a major injury by 294 

male drivers was lower by 0.048 under normal condition and 0.032 under rainy condition.  Under 295 

snowy condition, compared to female drivers, the probability of sustaining a minor injury by male 296 

drivers was higher by 0.087.  This indicates that male drivers were less likely to sustain a severe 297 

injury compared to female drivers.  This finding is consistent with those reported in O’Donnell and 298 

Connor (1996). 299 

 300 

Table 7 301 
Model comparisons. 302 
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Variable Normal  Rain  Snow 

 Major Minor No  Major Minor No  Major Minor No 

Male ⇩    ⇩     ⇧  

Rural  ⇧     ⇩     

Urban           ⇩ 

Curve         ⇧   

Rear-end ⇩          ⇩ 

Sideswipe   ⇩   ⇧      

Object   ⇧        ⇧ 

Daylight       ⇩     

Dark-lighted ⇧           

Single-unit truck  ⇩    ⇧   ⇩   

Truck trailer          ⇩  

Speed2   ⇧         

Speed3     ⇧       

Lane2  ⇧          

Asphalt  ⇩          

Interstate      ⇩    ⇧  

Time1 ⇧           

Time3         ⇧   

Weekend  ⇧    ⇩      

⇧ indicates increase and ⇩ indicates decrease in the probability of an injury severity level. 303 

 304 

6.2. Crash characteristics 305 

 Crashes occurring in rural areas were found to increase the probability of minor injury by 306 

0.011 under normal condition and decrease the probability of no injury by 0.018 under rainy 307 

condition.  On the other hand, crashes occurring in urban areas were found to decrease the 308 

probability of no injury by 0.022 under snowy condition.  A possible reason for this finding is that 309 

crashes occurring in rural areas increase the chance of minor injury, but since drivers are more 310 

cautious during rainy and snowy conditions their chance of sustaining an injury is low.  Crashes 311 

occurring on horizontal curves were found to increase the probability of major injury by 0.003 under 312 

snowy condition.  Similar results have been reported by Anderson and Hernandez (2017), Islam et 313 

al. (2014), Naik et al. (2016) and Osman et al. (2016).  For example, Anderson and Hernandez (2017) 314 

found that horizontal curves increase the probability of injury on U.S. and state highways. 315 

 Rear-end crashes were found to decrease the probability of major injury by 0.003 under 316 

normal condition and decrease the probability of no injury by 0.032 under snowy condition.  A 317 
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possible explanation is that under normal condition when a truck is struck from behind by another 318 

vehicle, it is less likely to cause a major injury for the driver.  Sideswipe collisions were found to 319 

decrease the probability of no injury by 0.018 under normal condition and increase the probability 320 

of minor injury by 0.010 under rainy condition.  One possible reason could be when a truck is 321 

involved in sideswipe collision with another vehicle under normal condition it is less likely to cause 322 

major or minor injury for the driver.  However, under rainy condition, the sideswipe collision may 323 

cause the vehicle to stray from its lane or road, and thus, resulting in a higher probability for minor 324 

injury.  Hitting an object was found to increase the probability of no injury by 0.005 under normal 325 

condition and increase the probability of no injury by 0.013 under snowy condition.  This result is 326 

consistent with the finding of Naik et al. (2016), where it is reported that hitting fixed objects are 327 

associated with less severe injuries. 328 

 Two of the lighting condition variables were found to be significant: daylight and dark-329 

lighted.  Crashes under daylight were found to decrease the probability of no injury by 0.007 under 330 

rainy condition.  Furthermore, crashes under dark with streetlights were found to increase the 331 

probability of major injury by 0.001 under normal condition.  One possible explanation for truck 332 

drivers experiencing higher probability of major injury could be the poor visibility under rainy 333 

condition during nighttime.  This finding suggests that roadway visibility has significant impact on 334 

the driver injury severity.  Previous truck-involved crash studies reported the similar findings as well 335 

(e.g., Pahukula et al., 2015; Uddin and Huynh, 2017). 336 

 337 

6.3. Vehicle characteristics 338 

 Single-unit trucks were found to decrease the probability of minor injury by 0.026 under 339 

normal condition, increase the probability of minor injury by 0.033 under rainy condition and 340 

decrease the probability of major injury by 0.013 under snowy condition.  This finding suggests that 341 

single-unit truck drivers are less likely to experience severe injuries from crashes under normal and 342 
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rainy condition; however, they are more likely to experience severe injuries from crashes under 343 

snowy condition.  This may be due to the combined effects of trucks being heavy and slippery road 344 

conditions due to snow, which makes harder to stop and easier to lose control.  Truck trailers were 345 

found to decrease the probability of minor injury by 0.007 under snowy condition.  A possible 346 

explanation could be the drivers being more cautious under snowy condition. 347 

 348 

6.4. Roadway characteristics 349 

 Speed limit being 45 to 60 mph was found to increase the probability of no injury by 0.009 350 

under normal condition.  Speed limit being 65 mph or higher was found to increase the probability 351 

of major injury by 0.004 under rainy condition.  This finding suggests that higher speed limits have a 352 

potential adverse effect on truck safety.  The finding is consistent with those reported in previous 353 

studies (e.g., Cerwick et al., 2014; Chang and Mannering, 1999; Chen et al., 2018; Uddin and Huynh, 354 

2017).  Number of lanes being 4 or more was found to increase the probability of minor injury by 355 

0.020 under normal condition.  Asphaltic concrete surface was found to decrease the probability of 356 

minor injury by 0.035 under normal condition.  Interstate highway was found to decrease the 357 

probability of minor injury by 0.003 under rainy condition and increase the probability of minor 358 

injury by 0.009 under snowy condition.  A possible explanation is that during inclement weather 359 

condition, truck drivers are more cautious.  The combination of the drivers being more cautious and 360 

slower vehicle speed reduces the risk of severe injury. 361 

 362 

6.5. Temporal characteristics 363 

 Crashes occurring during the morning peak hours (7 to 9:59 AM) were found to increase the 364 

probability of major injury by 0.004 under normal condition.  In addition, crashes occurring during 365 

the evening peak hours (4 PM to 6:59 PM) were found to increase the probability of major injury by 366 

0.003 under snowy condition.  This is perhaps because of the combined effects of severe collisions 367 
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due to high traffic volume and dark lighting condition in the fall and winter.  Weekend crashes were 368 

found to increase the probability of minor injury by 0.021 under normal condition and decrease the 369 

probability of minor injury by 0.020 under rainy condition.  A possible explanation is that traffic 370 

volume tends to be lower on commuter routes on the weekends, and thus, crashes resulting in less 371 

severe injury. 372 

 373 

7.  Conclusion 374 

 This study investigated truck driver injury severity under different weather conditions using 375 

crash data from the state of Ohio from 2011 to 2015.  Two likelihood ratio tests were conducted to 376 

test the hypothesis that separate models are warranted for different weather conditions.  The results 377 

of these tests suggested that separate weather condition models are needed, particularly those in the 378 

HSIS database.  Subsequently, three weather condition models were estimated: normal, rain and 379 

snow.  A good number of the statistically significant variables were found to be exclusive to each 380 

weather condition model, which further underscores the need to examine driver injury severity in 381 

truck-involved crashes for different weather conditions.  Specifically, it was found that 5 significant 382 

variables were exclusive to crashes during normal condition (dark-lighted, speed limit (45 to 60 383 

mph), 4 or more lanes, asphalt, and time (7 AM to 9:59 AM)), 3 significant variables were exclusive 384 

to crashes during rainy condition (daylight, speed limit (≥ 65 mph), and interstate), and 4 significant 385 

variables were exclusive to crashes in snowy condition (urban, curve, truck trailer, and time (4 PM 386 

to 6:59 PM)).  The parameters male and single-unit truck were found to have an impact on driver 387 

injury severity across all weather conditions.  Rural, rear-end, and sideswipe crash parameters were 388 

found to have significantly different levels of impact on injury severity in truck-involved crashes. 389 

 The results obtained from this study’s developed models have a number of implications.  390 

First, male drivers were found to sustain less severe injuries compared to female drivers.  This finding 391 

suggests that safety and enforcement programs should focus on female truck drivers; perhaps, 392 
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providing additional driving training and/or traffic safety course.  They should be taught to obey the 393 

traffic rules and regulations strictly to improve their safety while driving.  Second, higher speed limit 394 

was found to be positively associated with major injuries under rainy condition.  This finding 395 

suggests that the use of a variable speed limit sign to lower speeds during rainy condition may reduce 396 

injury severity in truck-involved crashes.  Third, it was found that truck drivers were less likely to 397 

sustain severe injuries on interstates under both rainy and snowy conditions.  This finding suggests 398 

that trucks should be restricted or prohibited on certain non-interstate routes under rainy and snowy 399 

conditions.  Lastly, during afternoon peak (4 PM to 6:59 PM) under snowy condition, it was found 400 

that truck drivers were more likely to be involved in major injuries.  A possible explanation is that 401 

the evening rush hour could lead to aggressive driving.  This finding suggests that supply chains and 402 

logistics policies should be put in place to allow trucks to make deliveries during off peak hours. 403 

 Similar to most past studies, this study has the limitation of using crash data from a single 404 

state.  This fact should be taken into account when interpreting and applying the findings.  In future 405 

research, it would be more insightful if researchers were to combine crash data from multiple states 406 

and different databases.  In a few recent studies, it has been reported that crash data may have 407 

temporal instability due to a number of fundamental behavioral reasons (Behnood and Mannering, 408 

2015, 2019; Mannering, 2018).  It is technically challenging to explicitly account for temporal 409 

elements based on the current modeling approaches according to Mannering (2018).  This is a new 410 

area of research that could potentially lead to a new paradigm for modeling crashes. 411 
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