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ABSTRACT 
The use of hydrogen as an alternative transportation fuel has gained much interest in recent years.  Hydrogen can be 
utilized in electric vehicles equipped with hydrogen powertrains (including hydrogen internal combustion engines or fuel 
cells).  Given that most of the freight in the U.S. is transported via diesel trucks, transition to hydrogen fuel would help 
achieve significant environmental benefits as well as accelerate the decarbonization of the freight transportation sector.  
This paper presents the methodology and results of a case study on modeling freight traffic demand and highway networks 
based on publicly available data for the Interstate 75 freight corridor.  The purpose of this study is to prepare input traffic 
and network data that can support the planning of a hydrogen fueling station infrastructure.  In particular, the data can be 
used for siting and characterizing an optimized framework of hydrogen fueling stations from candidate diesel stations 
along the Interstate 75 corridor.  The methodologies developed and presented in this paper may be readily expanded 
and applied to any transport corridor given the data availability.  This paper is the first in a series that will build out a 
comprehensive model to optimize a consolidated national hydrogen refueling infrastructure eco-system targeted at 
commercial vehicles. 
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INTRODUCTION 
Greenhouse gas (GHG) emissions from the transportation sector is one of the largest in the U.S.  According to 
Environmental Protection Agency, transportation sector accounted for about 29 percent of the total U.S. GHG emissions in 
2019.  Most of these emissions from transportation are resulting from the combustion of petroleum-based fuels (EPA, 
2022).  The introduction of a decarbonized energy economy will, in part, necessitate the development of a decarbonized 
commercial freight truck transportation system and supporting eco-system.  Characterizing and optimizing a national 
refueling infrastructure to support this decarbonized freight system is critical, where identifying both “spatial” (location) 
and “temporal” (time-based evolution) requirements will be necessary to successfully launch and advance a sustainable 
solution.  This process will need to factor in the specific characteristics of the fuel type and correlate that to the anticipated 
demand (due to freight volume and adoption scale up in time) to determine the optimized refueling sites on public access 
roadways.  One of the ways to reduce emissions associated with freight truck transportation is to switch to alternative fuels 
that emit fewer emissions than fuels currently being used.  Hydrogen is one of those alternative fuel sources.  The use of 
hydrogen has gained much interest in recent years.  Hydrogen consumption in a vehicle may be achieved either 
thermodynamically through an internal combustion engine or electrochemically through a fuel cell.  It is a critical element 
in the decarbonization of the transportation sector. 
 
According to Freight Analysis Framework, U.S. transportation system moved 19.2 billion tons of freight in 2020; of which, 
12.5 billion tons (about 65%) of freight were moved by truck (FAF, 2022).  Multimodal freight volume data across the U.S. 
freight corridors are shown in Figure 1.  This substantial volume indicates the need for transitioning to zero-emission fuels 
(e.g., hydrogen) to achieve a significant reduction in GHG emissions from the freight transportation sector.  With the roll-
out of hydrogen trucks, there will also be a need for adequate refueling infrastructure.  To this end, this study conducts a 
case study on modeling freight traffic demand and highway networks for the Interstate 75 corridor.  The traffic and network 
data will be used to determine the optimal location of hydrogen fuel stations from candidate diesel fuel stations. 
 
Previous studies have largely focused on the emerging needs of the electric charging infrastructure (for battery electric 

vehicles) with the primary focus on passenger vehicles and a secondary focus on commercial vehicle needs (California 

Governor’s Interagency Working Group on Zero-emission Vehicles, 2013; Fetene et al., 2016; Ge et al., 2011; Gusrialdi 
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et al., 2014; He et al., 2015; Jochem et al., 2016; Li et al., 2020; Peterson, 2011; Xie et al., 2018; Xie and Lin, 2021).  In 

the absence of a significant technology disrupter, it is quite probable that the future zero-emission commercial vehicle 

fuel will likely remain multi-faceted, including a mix of battery electric vehicles, fuel cell electric vehicles, and other 

powertrains.  This will necessitate a more comprehensive assessment of the vehicle and infrastructure systems such 

that a complete application and temporal roadmap of the powertrain and the supporting eco-system may be developed. 

The efforts in the paper create a critical step in this endeavor. 

 

 
Fig.1.  Major freight corridors and volume (roads, rail, and inland waterways) (FHWA, 2022). 

 
Publicly available freight demand data and highway network information are used.  The data sources used in modeling 
freight traffic demand include Freight Analysis Framework (FAF, 2022), Travel Monitoring Analysis System Weigh-in-motion 
data (TMAS, 2022), and Commodity Flow Survey data (CFS, 2022).  The objective of this modeling is to estimate the 
number of heavy-duty trucks, Federal Highway Administration (FHWA) Classes 9 to 13, going from origins to destinations 
via the Interstate 75 corridor based on Freight Analysis Framework (FAF) flow tonnage and truck weights as measured by 
Travel Monitoring Analysis System Weigh-in-motion devices.  FAF highway network represents the nation’s highways 
comprised of Rural Arterials, Urban Principal Arterials, and all National Highway System routes.  The objective of this 
modeling is to generalize the network components (nodes and links) so that it provides a graphical representation of 
highway routes on the entire segment of Interstate 75 corridor (~1,786 miles with the North end located near the U.S.-
Canada border in Michigan and South end located in West Miami, Florida). 
 
RELATED STUDIES 
Average payloads are major inputs for converting freight tonnage into the number of trucks.  Table 1 summarizes the related 
studies where truck payloads were analyzed or modeled based on truck weights.  As evident, most of the studies employed 
Gaussian Mixture Model (GMM) with a varying number of components on truck weight data collected from weight-in-motion 
(WIM) stations located in the study region.  None of the studies provide a methodology to estimate the number of trucks 
with explicit consideration of season as well as at origin-destination (OD) levels.  This current study builds models to 
overcome the shortcoming by considering both of those parameters in the outputs. 
 
Table 1. Summary of previous literature on truck payload estimation. 

Study Study Area Data Source Modeling Approach Seasonality 
Consideration 

OD Truck 
Volume 
Estimation 

Nichols and Cetin 
(2007) 

Indiana Weigh-in-motion (WIM) 
[one station and FHWA 
Class 9 vehicle] 

Mixture Model [three 
components] 

No No 

Hyun et al. (2015) California WIM [three stations] Gaussian Mixture Model (GMM) 
[three components]; 
Customized Decision Tree Model 

No No 
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Federal Highway 
Administration (2016) 

U.S. Vehicle Inventory and 
Use Survey (VIUS); 
Freight Analysis 
Framework (FAF) 

Average Payload; 
Truck Equivalency Factor 

No Yes (not 
distinguished by 
weights) 

Hernandez (2017) California WIM [four stations] GMM [three components] No No 

Hwang et al. (2019) U.S. Travel Monitoring 
Analysis System 
(TMAS); 
VIUS 

GMM [three components] No No 

Kaisar et al. (2019) Florida WIM [37 stations] 
 

GMM [two or three components] No No 

Regehr et al. (2020) Manitoba, 
Canada 

Static scale 
measurement [3 
stations];  
WIM [one station] 

GMM [two or three components] No No 

 
Table 2 provides a summary of related studies that use large-scale highway networks and national-level freight data.  
Given the scope of the studies, emphasis was provided to obtain traffic flow on the network based on user-equilibrium 
traffic assignment.  This assignment is not always suitable for a route-specific traffic flow, especially for freight trucks. 
 
Table 2. Summary of previous literature on freight assignment and network preparation. 

Study Study Area Network Data Source Freight data Traffic Assignment Approach 

Hwang (2007) U.S.  Simplified U.S. interstate highway 
network (178 nodes & 588 links) 

FAF version 3 User equilibrium traffic assignment 

Uddin et al. (2021) U.S. Simplified U.S. road-rail intermodal 
network 

FAF version 3 User equilibrium traffic assignment 

 
DATA SOURCES 
Four major data sources were used in this study: (a) Travel Monitoring Analysis System (TMAS) Weigh-in-motion (WIM), 
(b) Freight Analysis Framework (FAF) version 5, (c) Commodity Flow Survey (CFS) Public Use File (PUF), and (d) FAF 
Highway Network. 
 
Weigh-in-motion (WIM) systems record gross vehicle weight, dynamic axle loads and spacing, the number of axles, 
speed of vehicle, lane, and direction of travel, vehicle classification by Federal Highway Administration (FHWA), axle 
weights, date, and time stamp, etc.  The entirety of the traffic count collection map including the WIMs is shown in Figure 
2.  The WIM stations that are located on I-75 corridor were filtered and used as input in the modeling performed.  
 

 
Fig.2. There are approximately 7,000 data collection sites nationally with 600 of them having WIM capabilities (FHWA, 2020) 

 
Freight Analysis Framework (FAF) version 5 integrates data from various sources to create a comprehensive picture of 
freight movement among states and major metropolitan areas by all modes of transportation.  The areas are defined as 
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FAF zone in the database.  FAF adopted these areas from Commodity Flow Survey (CFS) geographical areas.  There 
are a total of 132 areas in 2017 CFS.  The areas can be classified as one of the three types: metropolitan area, the 
remainder of state, and whole state.  All FAF zones crossed by or located near the I-75 corridor were included in the 
initial dataset on freight tonnage moving from origin FAF zone to destination FAF zone.  Figure 3 shows the I-75 corridor 
and selected FAF zone and associated zone centroid. 
 

 
Fig.3.  FAF zone and Interstate 75 corridor. 

 
CFS is the primary source of national and state-level data on domestic freight shipments by establishments in mining, 
manufacturing, wholesale, auxiliaries, and selected retail and services trade industries located in the 50 states and the 
District of Columbia.  The Public Use File (PUF) provides characteristics for all usable shipment records collected by 
CFS.  One important characteristic is the quarter of the survey year in which the shipment was made.  This assisted in 
estimating quarterly tonnage for a specific FAF origin-destination (OD) pair. 
 
FAF Highway Network is one of the most comprehensive public truck network datasets that contain roads at different 
road functional class levels.  Functional classification is the process by which roadways are grouped into classes, or 
systems according to the character of traffic service that they are intended to provide. The functional classification of a 
road is the class or group of roads to which the road belongs. There are three main functional classes as defined by the 
FHWA: arterials, collector, and local.  While Arterials, Collectors and Locals span the full range of roadway functions, 
the Federal functional classification scheme uses additional classification categories to describe these functions more 
accurately.  Distinctions between access-controlled and full-access roadways, the urban and rural development pattern, 
and subtleties between “major” and “minor” sub-classifications, are key considerations when determining the Federal 
functional classification category to which a particular roadway belongs. The process of determining the correct 
functional classification of a particular roadway is largely left to the individual states based on the federal guidelines. The 
FAF network consists of 670,427 road links.  Attributes of each link that were used in truck routing include speed limit, 
road length, FAF ID, etc.  This network was simplified to generate a graphical representation and the subset of the 
network that represents the I-75 corridor was considered. 
 
MODELING OF FREIGHT TRAFFIC 
The procedure to estimate OD truck count by FHWA class and quarter comprises eight steps.  Note that only heavy-
duty trucks (FHWA Classes 9 to 13) were considered.  The steps are (1) obtain FAF OD payload tonnage, (2) obtain truck 
allocation factor by FHWA class and distance range, (3) estimate payload tonnage by FHWA class, (4) obtain quarterly 
tonnage share from CFS PUF, (5) estimate payload tonnage by FHWA class and quarter, (6) obtain TMAS WIM data, 
(7) apply Gaussian Mixture Model by FHWA class, quarter, and travel direction, and (8) estimate average daily truck 
counts by FHWA class and quarter.  Figure 4 illustrates the estimation workflow.  Brief discussions on each step are 
provided below. 
 
Step 1: Obtain FAF OD payload tonnage 
For each of the selected FAF OD pairs, obtain payload tonnage for year 2017 from the FAF database.  Data for 2017 
were extracted since it is the base year for FAF version 5. 
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Step 2: Obtain truck allocation factor by FHWA class and distance range 
FAF documentation on freight traffic assignment provides truck allocation factors by FHWA class and distance range.  
Based on the distance from origin FAF zone and destination FAF zone, truck allocation factors by FHWA classes were 
obtained. 
 

 
Fig.4.  Procedure for estimation of OD truck count by FHWA class and quarter. 

 
Step 3: Estimate payload tonnage by FHWA class 
Use outputs from Steps 1 and 2, and then estimate payload tonnage by FHWA class. 
 
Step 4: Obtain quarterly tonnage share from CFS PUF 
CFS PUF contains shipment records along with information about the quarter in which the shipment was made.  For a 
certain OD pair, shipments were aggregated by quarter and tonnage shares were estimated. 
 
Step 5: Estimate payload tonnage by FHWA class and quarter 
Use outputs from Steps 3 and 4, and then estimate payload tonnage by FHWA class and quarter. 
 
Step 6: Obtain TMAS WIM data 
Filter WIM truck weight data to only include stations that are located on the I-75 corridor from TMAS database.  Data 
were extracted for FHWA Classes 9 to 13 and for year 2017. 
 
Station-level truck weights by FHWA Classes 9 to 13 were investigated to determine if there are monthly or quarterly 
variations.  Figure 5 shows FHWA Class 12 truck weight distributions by month of the year for one WIM station in Florida 
on the Interstate 75 corridor; Figure 6 shows the weight distributions on a single plot.  Note that, for this particular WIM 
station, weight data for the months October to December were missing.  Possible reasons might be WIM being offline 
due to instrument issues or simply not reporting data to FHWA.  As we can see, truck weights are a bit different month 
over month.  The peaks for different months are at a different weight level.  This highlighted the need for analysis with 
explicit consideration of seasonal (i.e., quarterly or monthly) variation. Similar figures may be generated for the other 
weigh stations. It is important to not aggregate these to maintain the distinct traffic characteristics along different 
segments of the freight corridor. 
 
Step 7: Apply Gaussian Mixture Model by FHWA class, quarter, and travel direction 
A Gaussian Mixture Model (GMM) procedure was used to define the empty, partially loaded, and loaded to weight limit 
for each FHWA vehicle class, quarter, and travel direction from the TMAS WIM data.  The GMM is a linear composition 
of Gaussian distributions combined using a mixing proportion parameter. 
 
𝑓(𝑥) = ∑ 𝜆𝑚 𝒩(𝑥; 𝜇𝑚, Σ𝑚)𝑀

𝑚=1                                                      (1) 
 
where, 
𝑚 = number of mixture components, 
𝑀 = total number of mixture components, 𝑚 = 1, … , 𝑀 

𝜆𝑚= mixing proportion, and  

𝒩(𝑥; 𝜇𝑚, Σ𝑚) = Gaussian distribution with mean 𝜇 and covariance matrix Σ. 
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Fig.5.  Distribution of FHWA Class 12 truck weights in one WIM station in Florida. 
 

 
Fig.6.  Monthly Distribution of FHWA Class 12 truck weights. 

 
Step 8: Estimate average daily truck counts by FHWA class and quarter 
Once a best-fit GMM was established, the means for 3 components were considered as 𝜇𝑒 , 𝜇𝑝 , and 𝜇𝑓 ; and the 

corresponding mixing proportions were 𝜆𝑒, 𝜆𝑝, and 𝜆𝑓.  Then, the number of trucks empty, number of trucks partially 

loaded, and number of trucks loaded to weight limit were calculated as follows. 
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Number of trucks partially loaded, 𝑁𝑝 =
𝑇𝑖(

𝜆𝑝

𝜆𝑝+𝜆𝑓
)

𝜇𝑝−𝜇𝑒
                                 (2) 

 

Number of trucks loaded to weight limit, 𝑁𝑓 =
𝑇𝑖(

𝜆𝑓

𝜆𝑝+𝜆𝑓
)

𝜇𝑓−𝜇𝑒
                                (3) 

 

Number of trucks empty, 𝑁𝑒 = (
𝜆𝑒

𝜆𝑝+𝜆𝑓
) (𝑁𝑝 + 𝑁𝑓)                                 (4) 

 
Total number of trucks for an OD pair,  

𝑁 = ∑ [
𝑇𝑖(

𝜆𝑝

𝜆𝑝+𝜆𝑓
)

𝜇𝑝−𝜇𝑒
+

𝑇𝑖(
𝜆𝑓

𝜆𝑝+𝜆𝑓
)

𝜇𝑓−𝜇𝑒
+ (

𝜆𝑒

𝜆𝑝+𝜆𝑓
) (

𝑇𝑖(
𝜆𝑝

𝜆𝑝+𝜆𝑓
)

𝜇𝑝−𝜇𝑒
+

𝑇𝑖(
𝜆𝑓

𝜆𝑝+𝜆𝑓
)

𝜇𝑓−𝜇𝑒
)]𝑖={9,10,11,12,13}                               (5) 

 
Lastly, average daily truck counts for the above 3-components by truck type (i.e., FHWA Classes 9 to 13) and quarter were 
estimated.  This freight traffic data will be used as the input for demand in the planning of hydrogen fueling station.  Figure 
7(a) presents OD flow map for FHWA Class 9 partially loaded trucks during first quarter of the study year whereas Figure 
7(b) presents the same during second quarter of the study year.   
 

  

(a) (b) 

Fig.7.  FHWA Class 9 partially loaded truck flow map: (a) quarter 1 and (b) quarter 2. 

 
MODELING OF HIGHWAY NETWORKS 
To simulate truck movements from origin to destination and obtain fuel consumption along the route, truck routing 
information, including which road a truck takes and the road length is needed.  This section illustrates the process to obtain 
truck routes from all FAF origins to FAF destinations that traverse the I-75 corridor.  The modeling comprises two steps: (1) 
network preparation and (2) truck routing. 
 
Step 1: Network preparation 
FAF highway network was utilized for truck routing purposes.  To speed up truck routing, a network simplification process 
was first introduced to consolidate the network and to reduce the number of total highway links without losing information.  
In the process, for any two adjacent links 𝐿𝑎,𝑏, 𝐿𝑏,𝑐, if (i) no additional truck links are connected to the junction of the two 

links, denoted by node 𝑗, and (ii) the two links have the same speed limit, then the two adjacent links can be consolidated 

into one link connecting node 𝑎 and 𝑐: 𝐿𝑎,𝑐.  A simple network example is shown in Figure 8(a).  Green dots are the 

vertices of each road link before simplification while red circles represent the vertices after simplification.  The speed 

limit of each link is marked in the figure.  In the example, 𝐿𝑎,𝑐 and 𝐿𝑐,𝑒 cannot be consolidated because there is another 

link 𝐿𝑐,𝑑 that connect to node 𝑐. 𝐿𝑐,𝑑 and 𝐿𝑑,𝑒 cannot be consolidated because the two links have different speed limits.  

𝐿𝑎,𝑏 and 𝐿𝑏,𝑐 , on the other hand, can be merged into one link 𝐿𝑎,𝑐 given both conditions are satisfied.  Figure 8(b) shows 
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a portion of the simplified FAF4 network.  Similarly, green dots are the vertices of each road link in the FAF4 network.  
Red circles represent the vertices after simplification. 
 

 
Fig.8.  (a) Network simplification example; (b) FAF4 network vertices vs simplified FAF4 network vertices. 

 
Step 2: Truck routing 
It was assumed that all trucks will choose the shortest path between Origin (O) and Destination (D).  There is a total of 
132 origin FAF zones and 132 destination FAF zones in the FAF4 network.  All truck movements were assumed to start 
from the centroid of the origin region and end at the centroid of the destination region.  The same assumptions were 
adopted in previous studies (Hwang, 2007).  The shortest path from 132 origin zones to 132 destination zones was 
obtained.  All paths that traverse the I-75 corridor were then identified.  Figure 9 shows an example of the resulting 
shortest path from the Detroit-Warren-Ann Arbor area to the Birmingham-Hoover-Talladega area.  The shortest path 
(green lines) uses the I-75 corridor (black lines) from node E1 to node E2. 
 

 
Fig.9.  The shortest path from Detroit-Warren-Ann Arbor area to Birmingham-Hoover-Talladega area. 

 
Based on the routing results, each route from O to D is divided into three segments: (i) the segment from a FAF origin 
to the I-75 corridor entrance (e.g., O to E1 in Figure 9); (ii) The segment from the I-75 corridor entrance to the I-75 
corridor exit (e.g., E1 to E2 in Figure 9); and (iii) the segment from the I-75 corridor exit to a destination (e.g., E2 to D in 
Figure 9).  Note that a truck may leave the I-75 corridor for a bypass and reenter the same corridor again before reaching 
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the destination.  In these cases, there are more than three segments.  The resulting O, D, and routed distance for each 
segment are the primary input data for truck hydrogen fuel consumption simulation. 
 
CONCLUSIONS 
The introduction of a decarbonized energy economy will, in part, necessitate the development of a decarbonized 
commercial freight truck transportation system and supporting ecosystem.  Characterizing and optimizing a national 
refueling infrastructure to support this decarbonized freight system is critical, where identifying both “spatial” and 
“temporal” requirements will be necessary to successfully launch and advance a sustainable solution.  This process will 
need to factor in the specific characteristics of the fuel type and correlate that to the anticipated demand (due to freight 
volume and adoption scale up in time) to determine the optimized refueling sites on public access roadways.  This paper 
is the first in a series that will build out a comprehensive model to optimize a consolidated national hydrogen refueling 
infrastructure eco-system targeted at commercial vehicles.  The study provided a framework for modeling freight traffic 
demand and highway networks for planning hydrogen fueling stations.  The framework was applied using publicly 
available freight data from Freight Analysis Framework (FAF), Travel Monitoring Analysis System Weigh-in-motion, 
Commodity Flow Survey, and FAF highway network.  Outputs from the study will serve as primary inputs in the fueling 
station planning.  These include average daily truck counts by FHWA class and quarter for different types of trucks by 
weight distributions and routes via the I-75 corridor from origins to destinations.  The data can be used for siting and 
characterizing an optimized framework of hydrogen fueling stations from candidate diesel stations along the Interstate 
75 corridor.  The methodologies developed and presented in this paper may be readily expanded and applied to any 
transport corridor given the data availability. 
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