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Abstract 

This study aims to explore the usefulness of machine learning classifiers for modeling freight mode 

choice. We investigate eight commonly used machine learning classifiers, namely Naïve Bayes, 

Support Vector Machine, Artificial Neural Network, K-Nearest Neighbors, Classification and 

Regression Tree, Random Forest, Boosting and Bagging, along with the classical Multinomial 

Logit model. The 2012 Commodity Flow Survey data is used as the primary data source; we 

augment it with spatial attributes from secondary data sources. The performance of the classifiers 

is compared based on prediction accuracy results. The current research also examines the role of 

sample size and training-testing data split ratios on the predictive ability of the various approaches. 

In addition, the importance of variables is estimated to determine how the variables influence 

freight mode choice. The results show that the tree-based ensemble classifiers perform the best. 

Specifically, Random Forest produces the most accurate predictions, closely followed by Boosting 

and Bagging. With regard to variable importance, shipment characteristics, such as shipment 

distance, industry classification of the shipper and shipment size, are the most significant factor 

for freight mode choice decisions. 

 

Keywords: Freight mode choice, Machine learning, Classification, Commodity Flow Survey   
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Introduction 

Freight industry encompasses a significant component of the US economy. In fact, the value of 

annual freight shipments in US amount to upwards of 17 trillion dollars (Freight Analysis 

Framework, 2019). Given the magnitude of freight industry technological transformations 

underway in transportation and change in behavioral patterns of consumption in the US (and in 

general) could have significant impacts. In terms of technological transformation, the emergence 

of connected and autonomous vehicles can have significant implications for freight movement. 

While level 4 adoption which is a fully self-driving vehicle in all conditions, (as defined by 

NHTSA) is likely to take time, several intermediate levels of vehicle technologies are already 

being introduced by private and public companies. These vehicular advances offer significant 

advantages to the trucking industry in terms of fuel, time and labor cost savings. For instance, 

adoption of fully autonomous vehicles will allow the trucking industry to circumvent the need for 

federally mandated driver breaks for long-haul trips. Moreover, with the prevalence of online 

shopping (such as Amazon, Walmart) and crowd sourcing shipping options (such as Instacart, 

Doordash), the traditional pattern of freight flows is rapidly changing; particularly, the shipment 

size distribution is moving towards a higher share of smaller size shipments (Golob and Regan, 

2001; Rotem-Mindali and Weltevreden, 2013). According to CFS data, in 2012, almost 90 percent 

commodities shipped were under 500 pounds and worth 25 percent by shipment value ($). A 

quantitative analysis for understanding the impact of these emerging changes is critical to 

proactively adjust/accommodate for the impacts on transportation industry and economy in 

general. 

Of the different choice dimensions associated with freight flows, the mode(s) chosen for 

shipping freight is an important component of supply chain network and has significant 

implications for the transportation system and the environment at large. For instance, in addition 

to GHG emissions, movement of trucks is associated with negative externalities such as traffic 

congestion (ensuing delays), traffic crashes (ensuing property damage, injuries and fatalities) 

(Huang et al., 2010), and expedient transportation infrastructure (roadway and bridge surfaces) 

deterioration (Ponnuswamy and Johnson Victor, 2012). Moreover, the “unpriced” external cost 

(per ton-mile) of shipping freight using truck mode is eight times higher than the “unpriced” 

external cost of using rail mode (Austin, 2015). Given the wide-ranging implications, researchers 

have started to focus their attention towards developing freight mode choice models. A 

comprehensive understanding of the decision process involved in shipping freight by various 

modes would benefit transportation infrastructure planning decisions and their management. 

 The research on modeling freight mode choice has typically focused on the random utility 

based multinomial logit (MNL) model and its variants (such as nested logit, mixed MNL, and 

latent segmentation based MNL) (see Keya et al., 2017 for a detailed review).  Over the last decade, 

driven by the enhancements in computing power and the advent of big data analytics, machine 

learning approaches have gained attention in the transportation research community. These 

methods include Naïve Bayes (NB), Support Vector Machine (SVM), Artificial Neural Networks 

(ANN), Classification and Regression Tree (CART), Random Forest (RF), Boosting and Bagging. 

With their inherent strength in handling large datasets, these approaches are well suited to 

extracting patterns that are often hard to accommodate within traditional econometric models.  

To be sure, several research efforts have accommodated for machine learning approaches 

for modeling mode choice. The adoption of these approaches is more common in examining 

passenger mode choice analysis. A brief summary of earlier research on the use of machine 

learning (ML) methods for both passenger and freight mode choice are presented in Table 1. The 



4 

 

information in the table includes study area, data source, modes considered, classical and ML 

methods used, comparison metrics, training-testing data split and major findings obtained from the 

comparison exercise with the classical logit-based model. Several observations can be made from 

the table. First, in the passenger context, a wide variety of modes are considered. However, only 

truck and rail modes are considered in the freight context. The focus in these studies is the 

competition (and the potential trade-off) between rail and truck mode. Second, in the passenger 

and freight related studies, Artificial Neural Network (ANN) and its variants are the most 

commonly used ML classifier used to examine mode choice. The ML classifiers are compared 

against utility-based logit/probit models such binary logit/probit and MNL. The data sources 

include both revealed preference and stated preference surveys. Third, the majority of the studies 

used accuracy (success rate), precision, recall and confusion matrix to compare the performances 

of the classical and ML classifier methods. Fourth, results from past research are somewhat mixed 

in comparing the performance of traditional discrete choice models and ML classifiers; the 

majority of the studies finding that ML methods are better while a few reports result on the 

contrary. As expected, depending on the data types (i.e., data from a single survey or data compiled 

from multiple sources), performance of the models was found to be different. 

 

[Table 1 near here] 

 

While earlier research has contributed substantially to our understanding of factors 

influencing mode choice, several gaps still exist. There is a paucity of research on the examination 

of freight mode choice using ML methods; our review yielded only four studies (Abdelwahab and 

Sayed, 1999; Sayed and Razavi, 2000; Sayed et al., 2003; Tortum et al., 2009). Their analysis 

efforts are limited to only ANN and neuro fuzzy approaches and no conclusive evidence regarding 

improvement in predictive accuracy over classical models was reported. In the passenger mode 

choice context, earlier research has highlighted improvements in prediction accuracy with ML 

approaches. However, the performance of other ML methods is yet to be investigated in freight 

mode choice analysis. 

The current research is motivated by the need to undertake a detailed comparison of the 

widely used ML classifier methods for modeling fright mode choice. Using the 2012 Commodity 

Flow Survey (CFS) data, we investigate the predictive performance of a host of widely used ML 

classifier methods—Naïve Bayes (NB), Support Vector Machine (SVM), ANN, K-Nearest 

Neighbors (KNN), Classification and Regression Tree (CART), Random Forest (RF), Boosting 

(BOOST) and Bagging (BAG)—with the traditional MNL model. Previous freight-related studies 

using ML methods only considered two modes for analysis—truck and rail. In our analysis, we 

consider 5 modes including truck, rail, air, water and parcel. Moreover, the analysis is not confined 

to using variables only available in the dataset; we augmented it with spatial attributes (several 

origin-destination attributes and CFS zonal level variables) from secondary data sources. Finally, 

the current research also examines the role of sample size and training-testing data split ratios on 

the predictive ability of the various approaches.  
 

Data 

The primary data source used in this study is the 2012 Commodity Flow Survey (CFS). This data 

is publicly available and has a total of 4,547,661 shipment records from approximately 60,000 

responding businesses and industries. Each shipment record includes some important freight 

characteristics (e.g., shipment size, value, distance, commodity type and origin and destination 

CFS area). The CFS reports 21 modes of transport. Since many of these alternatives have 
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insignificant sample share, the reported modes were consolidated into five major groups: (1) for-

hire truck, (2) private truck, (3) parcel service, (4) air and (5) other mode. For-hire truck mode 

represents the trucks operated by non-governmental businesses to provide services to customers 

under a negotiated rate. Private truck mode represents trucks owned and used by individual 

businesses for their own freight movement. Parcel service refers to a combination of modes (on 

ground/air/express carrier). Air mode consists of both air and truck since truck is needed to pick 

up and/or deliver the shipment from origin and/or destination which cannot be accessed by air. 

Lastly, the other mode consists of rail, water, pipeline or combination of non-parcel multiple 

modes. The weighted mode shares are for-hire truck (16.58%), private truck (26.06%), parcel 

service (55.85%), air (1.36%) and other (0.16%). 

Shipment size, value and distance are reported as continuous variable in the CFS data. 

Shipment size and value were categorized into seven and five groups, respectively. These groups 

were created by making sure that each group has reasonable sample share. The groups for shipment 

size are ≤30, 31–200, 201–1000, 1001–5000, 5001–30000, 3001–45000 and >45000 lb. The 

groups for shipment value are <$300, $300–$1000, $1001–$5000 and >$5000. Shipment distance 

was categorized into eight groups following the Freight Analysis Framework distance band 

(Freight Analysis Framework, 2019). The groups are <100, 100–249, 250–499, 500–749, 750–

999, 1000–1499, 1500–200 and >2000 mile. The other freight characteristics include Standard 

Classification of Transported Goods (SCTG) commodity types, hazardous materials, temperature-

controlled, export and origin and destination CFS area. For SCTG commodity types, based on the 

information provided in the CFS, shipments were consolidated into nine groups. Additionally, a 

number of origin-destination (OD) attributes and CFS zonal level (both at origin and destination) 

variables were generated utilizing several secondary data sources. The details of these variables 

and sources can be found in Keya et al. (2019). In this study, only those secondary variables found 

as statistically significant in freight mode choice in the above study is used. The resulting dataset 

has 21 variables, described in Table 2. 

 

[Table 2 near here] 

 

Methods Description 

 

Classifiers 

In this section we describe the methodologies used in the analysis. For the sake of brevity, we only 

provide the conceptual underpinning of the methods. In addition, we also mention how we 

calibrated and adapted the methods for our study. 

In our study, classical MNL is considered as the baseline classifier. Choice of mode is 

unordered; hence, MNL is the widely used method to examine it. In the MNL model, the 

probabilities describing the possible outcomes of observation are modeled using a logistic 

function. The model is implemented as a classifier in which an optimization problem is solved that 

minimizes a cost function (Flach, 2012). 

NB is a supervised learning method based on Bayes theorem with the assumption of 

conditional independence between every pair of features. To calculate probabilities from features, 

their probability distributions are estimated. In this study, Gaussian NB is used; that is, the 

probability of the features is assumed to be Gaussian. It is used because some of the input variables 

are real-valued. NB requires a small amount of training data to estimate the necessary parameters 

(Flach, 2012). 
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SVM is a supervised learning method with associated learning algorithms that analyze data 

used for classification. It classifies observations by projecting the variables into a high-dimensional 

feature space. The class that receives the most votes from all classifiers is chosen during prediction. 

In this study, an SVM with a linear kernel is specified for the decision function. Linear kernel 

provides more flexibility in the choice of penalties and loss functions and scales better to a large 

number of samples (Flach, 2012). 

The ANN method used here is the Multi-layer Perceptron (MLP), which is a supervised 

learning algorithm and is inspired by biological neural networks. Given a set of features and a 

target, it can learn a non-linear function approximation for classification. Typically, the classifier 

with one hidden layer is trained using Backpropagation methods by minimizing the Cross-Entropy 

loss function (Flach, 2012). In this study, an ANN with a single hidden layer of 100 neurons is 

used. 

KNN is an unsupervised learning algorithm based on the k nearest neighbors of each query 

point. It finds k number of training samples closest in distance to the new point and predicts the 

label from these.  Classification is computed from a simple majority vote of the nearest neighbors 

of each point (Flach, 2012). In this study, a KNN with 5 neighbors is used. 

CART is a non-parametric supervised learning method having a tree-like data structure. It 

creates a model that predicts the value of a target variable by learning simple decision rules inferred 

from the data. The nodes of the tree represent decision rules which split the feature space and the 

leaves of the tree represent the classes. CART is simple to understand and to interpret and requires 

little data preparation. However, CART learners create biased trees if some classes dominate 

(Flach, 2012). 

RF is an ensemble meta estimator that fits a number of CART classifiers on various sub-

samples of the dataset. In other words, instead of fitting a single “best” tree model, the RF 

strategically combines multiple simple decision trees to optimize predictive performance. Each 

tree in the ensemble is built from a sample drawn with replacement from the training set. Also, 

when splitting a node during the construction of the tree, the split that is picked is the best split 

among a random subset of the features. RF uses averaging to improve the predictive accuracy and 

control over-fitting (Flach, 2012). In this study, an RF consisting of 10 trees is used and two 

randomly selected variables are considered for each split at the tree nodes. 

BOOST is an ensemble meta estimator that fits a sequence of weak leaners on repeatedly 

modified versions of the data. The predictions from all of them are then combined through a 

weighted majority vote to produce the final prediction. Here the gradient boosting model is used, 

where in each stage a number of trees are fit on the negative gradient of the multinomial deviance 

loss function (Flach, 2012). In this study, 100 trees are fitted in total. 

BAG is an ensemble meta estimator that fits base classifiers on random subsets of the 

original dataset. Then the final prediction is formed by aggregating the individual predictions 

(either by voting or by averaging). It works best with strong and complex models (e.g., fully 

developed CART) (Flach, 2012). In this study, 10 classification trees are bagged. 

 

Model Comparison 

To compare the performance of the classifiers, we use a combination of k-fold cross validation 

and holdout method. First, using a split ratio (varied from 0.1 to 0.6), the dataset is partitioned into 

training and testing datasets. Then, the training dataset is evaluated utilizing k-fold cross 

validation. This procedure randomly partitions the training data into k disjoint subsets. One subset 

at a time is then used for testing the model, while k−1 sets are used to build the model. For different 
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k values and split ratio, the classifiers are evaluated. Next, based on the entire training dataset, the 

models are estimated. These models are then applied to the testing dataset for prediction purposes. 

 The classification performance of the models is evaluated using four metrics: accuracy, 

precision, recall and F1-score. Accuracy describes the percentage of correctly classified 

observations in a dataset; it is computed as the number of correctly classified observations, divided 

by the total number of observations classified. Precision measures the proportion of correctly 

classified observations among all of those observations that were similarly classified; it is 

computed as the number of correctly classified observations of a particular mode, divided by the 

total number of observations classified as that mode. Recall measures the proportion of 

observations of a particular class that are correctly classified; it is computed as the number 

correctly classified observations of a particular mode, divided by the total number of actual mode 

observations in the dataset. F1-score is the harmonic mean of precision and recall. Let us assume 

we have two modes, namely A and B, and a total of 100 observations. After prediction, it is found 

that the machine learning method correctly classified 40 mode A observations as mode A, 20 mode 

A observations as mode B, 10 mode B observations as mode A and 30 mode B observations as 

mode B. The accuracy of the classifier is 70/100 = 0.7; precision for mode A is 40/50 = 0.8; recall 

for mode A is 40/60 = 0.67; and F1-score for mode A is 2×(0.8×0.67)/(0.8+0.67) = 0.73. 

 

Results and Discussion 

All modeling and analysis were completed in Python and using the “scikit-learn” package 

(Pedregosa et al., 2011). This package provides efficient tools for machine learning classification 

methods. A standard desktop computer was used to run all the experiments. 

The analysis was conducted in the following steps. First, a sample was drawn for mode 

share analysis from CFS database. Second, for three instances of cross validation (10-, 20- and 30-

fold) and six instances of testing-training data split ratio (0.1, 0.2, 0.3, 0.4, 0.5 and 0.6), different 

classifiers were estimated. The various performance metrics described above were evaluated for 

all classifiers. Finally, the process was repeated with different sample sizes—136,073 records, 

226,785 records, 453,574 records, 907,139 records, 1,360,706 records, 1,814,271 records and 

2,267,842 records—to illustrate the influence of sample size on the classifier performance. 

While presenting detailed results for all scenarios considered is beyond the scope of the 

paper, we illustrate the exercise by presenting detailed results for one sample size (136,073 

records). Figure 1 presents the results of these experiments and compares the classifiers. For 

instance, Figure 1(a) shows the accuracy results for 0.1 split ratio (i.e., 90% training and 10% test 

data) under three cross validation sizes. For 10-fold cross validation, with respect to mean 

accuracy, RF had the best results (0.754), closely followed by BAG (0.750) and BOOST (0.749). 

The next best classifiers were CART (0.711), NB (0.672) and KNN (0.617). The accuracy for 

ANN (0.506) was slightly higher than MNL (0.420). SVM had the lowest accuracy for all 

classifiers with 0.367. In addition, SVM and ANN had very wide range in accuracy values (i.e., 

high standard deviation). For both 20- and 30-fold cross validation, similar trends were observed. 

Comparing the results over cross validation sizes, it is generally observed that the range of 

accuracy values becomes wider with a higher number of cross validations for all classifiers. The 

reader would note that, to fit the models and to get predictions from test data, sample weights 

provided in the dataset were used. 

Comparing different data split ratio results, a similar pattern in accuracy values, as 

described above, was evident. Based on the results, the optimal data split ratio can be obtained, 

which is the one with the smallest standard deviation. This optimal ratio helps to build efficient 
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models and to make better predictions. Considering all six data split ratio results, shown in Figure 

1, it is found that the accuracy values had the smallest standard deviation with ratio 0.3 for most 

of the classifiers. In addition, they had higher median accuracy at this split ratio. For that reason, 

we conclude that split ratio of 0.3 is the optimal ratio (70% training and 30% test). This ratio split 

was used for the subsequent experiments. 

 

[Figure 1 near here] 

 

The analysis was repeated for the 6 other samples identified earlier. The results of the 

experiments using the above seven samples and holdout method (ratio 0.3) are provided in Figure 

2 and Table 3. Figure 2 presents the accuracy results of the classifiers under different sample sizes. 

On the other hand, Table 3 presents the precision, recall and F1-score for each mode under RF, 

BAG and BOOST classifiers. The accuracy for RF, BAG, CART and KNN increased or remained 

the same with the increase in sample size while the accuracy for NB decreased with the increase 

in sample size. There is no distinct pattern present in accuracy values for ANN, MNL and SVM. 

Furthermore, for SVM, accuracy values substantially varied with the sample size. Several 

conclusions can be made from the above results. For freight mode choice modeling, the tree-based 

ensemble classifiers performed the best. However, increasing the sample size is not always 

associated with increased accuracy. If the accuracy increases, the amount is not that high (~1%). 

Given that the accuracy of MNL is not that high, it is recommended to use machine learning 

classifiers if sufficient observations are available. 

 

[Figure 2 near here] 

[Table 3 near here] 

 

From the various approaches, the three methods that offered the highest accuracy were 

considered for further analysis using precision, recall and F1-score. The measures by mode are 

presented for RF, BAG and BOOST methods in Table 3 for different sample sizes. The results 

highlight how increasing sample sizes contribute to improved recall values. However, for modes 

with smaller share such as Air, increasing sample size does not necessarily increase recall values 

(see BAG and BOOST classifier accuracy for air mode for different sample sizes). For modes with 

larger share such as truck modes, there is a general improvement in recall with sample size (while 

tapering is observed at the larger end of sample sizes). Similar relationships are observed for 

Precision and F1-scores. Overall, RF, BAG and BOOST performed well based on the estimates. 

To further offer insights on the variable affecting classifier performance, we plot 

importance of each variable for RF and BOOST classifiers in Figure 3. The importance values 

were obtained from experiments performed using different sample sizes. For RF, shipment 

distance is found to be the most important variable. The other variables with high importance are 

shipment size, industry classification of shipper and SCTG commodity type. Interestingly, 

shipment value is found to have moderate importance. This finding contradicts Abdelwahab and 

Sayed (1999) where “shipment value” was found not to have significant impact in the ANN model. 

Note that the other variables with moderate importance are origin CFS area, destination CFS area, 

density of employees at origin, number of warehouse and super center at origin, density of highway 

at both origin and destination, density of railway at both origin and destination, and population 

density at destination. For BOOST, industry classification is found to be the most important 

variable. Similar to RF results, shipment distance, size, and commodity type have high importance. 
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Overall, shipment characteristics have higher importance, and OD attributes and CFS zonal level 

variables have moderate to low importance in classifying freight mode choice. The result related 

to shipment characteristics being more important for freight mode choice corroborates other 

related studies (Sayed et al., 2003; Abdelwahab and Sayed, 1999). Since some of the OD attributes 

have moderate importance in both classifiers, it is recommended to use these attributes in addition 

to the shipment characteristics for modeling freight mode choice. 

 

[Figure 3 near here] 
 

Conclusion and Future Research 

Efficient and cost-effective freight movement is a prerequisite to a region’s economic viability, 

growth, prosperity, and livability. The mode chosen for freight transportation has significant 

implications for the transportation system and the environment at large. Traditionally, the research 

modeling freight mode choice has typically focused on the random utility based multinomial logit 

(MNL) model and its variants. Over the last decade, driven by the enhancements in computing 

power and the advent of big data analytics, machine learning approaches have gained attention 

from transportation researchers. With their inherent strength in handling large datasets, these 

approaches are well suited to extracting patterns that are often hard to accommodate within 

traditional econometric models. Despite the advantages, there is a paucity of research on the 

examination of freight mode choice using machine learning methods. The few studies found are 

limited in their number of alternatives consideration, number of observations used, and number of 

ML classifiers used. In our research, we aim to address these gaps in the literature. 

More specifically, we investigated the predictive performance of a host of widely used 

machine learning classifier methods—Naïve Bayes (NB), Support Vector Machine (SVM), 

Artificial Neural Network (ANN), K-Nearest Neighbors (KNN), Classification and Regression 

Tree (CART), Random Forest (RF), Boosting (BOOST) and Bagging (BAG)—with the traditional 

multinomial logit (MNL) model. The 2012 Commodity Flow Survey (CFS) data augmented with 

several spatial attributes (origin-destination attributes and CFS zonal level variables) from 

secondary data sources were used. A combination of k-fold cross validation and holdout method 

were employed. The major findings include: (a) among the investigated classifiers, RF produced 

the most accurate predictions, closely followed by BOOST and BAG, (b) the performance of MNL 

model was lower than all other classifiers, except SVM, (c) air mode had the lowest prediction 

accuracy among all classifiers.  Furthermore, private trucks had higher prediction than for-hire 

truck for all classifiers, except MNL and SVM and (d) the top three important variables for freight 

mode choice were shipment distance, industry classification of the shipper and shipment size. 

In future, the authors would like to incorporate several level of service measures (e.g., 

shipping cost, operating cost, shipping time) to the variables list to investigate if they have any 

impact on the freight mode choice decisions using the above machine learning classifiers. 
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TABLE 1 Previous literature on the use of machine learning for passenger and freight mode choice 

Study Study Area Data Source Mode(s) Considered 

Machine 

Learning 

Methods Used 

Classical 

Methods 

Used 

Comparison 

Metrics  

(Level of Prediction) 

Training and 

Testing Data 
Findings 

Passenger 

Nijkamp et al. 

(1996) 
Italy Census data Rail, road FNN BL 

Absolute residuals; 
relative residuals 

(Aggregate) 

Training (698); 

Test (349) 

• Both ANN and logit models 

provide good performance; 
ANN is marginally better  

Hensher and 

Ton (2000) 

Sydney and 

Melbourne, 
Australia 

Commute mode 
choice survey 

(stated 

preference) 

Drive alone, ride 

share, bus, busway, 
train, light rail 

ANN NL 
Prediction success 

(Aggregate) 
- 

• No clear indication of which 

model is better 

Wets et al. 
(2000) 

South Rotterdam,  
The Netherlands 

Activity survey 

Car driver, car 

passenger, bike, 

walk, public transport 

C4 Algorithm 
CHAID; 

MNL 
Predicted mode share  

(Aggregate) 

Training 

(3374); Test 

(1124) 

• None of the models clearly 

outperforms the other 

Xie et al. 
(2003) 

San Francisco, 
USA 

San Francisco 

Bay Area Travel 

Survey 

SOV (car, van, 

motorcycle, moped), 
carpool, transit, bike, 

walk 

DT; ANN-MLP MNL 

Confusion matrix; 

Correctly predicted 

mode share 

(Aggregate and 
disaggregate) 

Training 

(2373); Test 

(2373) 

• All three models provide 

comparable prediction 

performance 

Cantarella and 

de Luca 
(2005) 

Veneto,  

Italy 

Traveler 
interview survey 

(stated 

preference) 

Car, carpool, bus MFFN 

MNL; 

NL; 
CNL 

Predicted mode share 

difference; MSE  

(Aggregate) 
RMSE, Fitting factor 

(Disaggregate) 

Training (23%); 

Test (77%) 
• MLFFN outperforms classical 

models 

Moons et al. 

(2007) 

South Rotterdam,  

The Netherlands 
Activity survey 

Car driver, car 
passenger, bike, 

walk, public transport 

SVM; CART 
MNL; 

MFS; 

% of correct 
prediction 

(Aggregate) 

Training (70%); 

Test (30%) 

• On skewed dataset, classical 

models perform better; on 

balanced dataset, machine 

learning methods perform 

better 

Biagioni et al. 
(2009) 

Chicago,  
USA 

Chicago Travel 
Tracker Survey 

Walk, bike, auto-
drive, auto-

passenger, bus, train, 

Pace bus, commuter 
rail 

DT; NB; simple 

logistic; 

SVM 

MNL 
Accuracy, precision, 
recall (Aggregate) 

- 
• NB and DT performed the best 

but the performance of MNL 

was reasonable 
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Study Study Area Data Source Mode(s) Considered 

Machine 

Learning 

Methods Used 

Classical 

Methods 

Used 

Comparison 

Metrics  

(Level of Prediction) 

Training and 

Testing Data 
Findings 

Zhang and 
Xie (2008) 

San Francisco 
Bay Area, USA 

Commute trip 
data 

Drive alone, shared 

ride, transit, bike, 

walk 

SVM; MFNN MNL 
Confusion matrix 

(Aggregate) 
Training (75%); 
Testing (25%) 

• SVM outperforms MNL    

Pulugurta et 

al. (2013) 

Port Blair,  

India 

Household travel 

survey 

Car, bus, two-
wheeler, three-

wheeled auto-

rickshaw, cycle, 
cycle rickshaw, walk 

Sugeno-type 

fuzzy logic 

model 

MNL 

Classification 

accuracy; predicted 

mode share 

(Aggregate) 

Training (85); 

Testing (15%) 

• Prediction accuracy found: 

MNL (40%); fuzzy logit model 

(70%)  

• Predicted mode share by fuzzy 

logic model is closer to the 
actual values 

Omrani et al. 
(2013) 

Luxembourg 

City, 

Luxembourg 

Socioeconomic 
Panel Survey 

Car, public transit, 
walk/bike 

 ENN;  
ANN – MLP; 

ANN -RBF; 

DT; Bayes;  
K-NN; SVM 

MNL 

Confusion matrix; 
 success rate; 

(Aggregate) 

ternary plot 
(Disaggregate) 

Training (60); 
Testing (40) 

• Success rate found: MNL 

(62%); ANN (80-81%); ENN 
(83%); DT (78%); Bayes 

(67%); k-NN (77%); SVM 

(80%)  

Sekhar et al. 

(2016) 

Delhi,  

India 

Household 

survey 

Car, carpool, two-
wheeler, bus, metro, 

three-wheeler, 

bicycle, walk 

DT; RF MNL 
Prediction accuracy 

(Aggregate) 
- 

• Prediction accuracy found: 

MNL (77%); RF (99%) 

Omrani 
(2015) 

Luxembourg 

City, 

Luxembourg 

Socioeconomic 
Panel Survey 

Car, Public transit, 
Walk/bike 

ANN-MLP; 

ANN-RBF; 

SVM 

MNL 

Confusion matrix; 
 success rate; 

(Aggregate) 

ternary plot 
(Disaggregate) 

Training (60); 
Testing (40) 

• Percentage of correct 

prediction found: MNL (65%); 

SVM (68%); ANN-RBF 

(80%); ANN-MLP (82%) 

Li et al. 

(2016) 
Beijing, China 

Holiday travel 

data 
Car, non-car 

Cluster based 

logistic 
regression 

BL 
Prediction accuracy 

(Aggregate) 
- 

• Cluster based Logistic 

regression performed better 

Hagenauer 
and Helbich 

(2017) 

The Netherland 
Dutch National 

Travel Survey 

Walk, bike, car, 

public transit 

NB; SVM; 

ANN; DT; 

Boosting; 

Bagging; RF 

MNL 
Prediction accuracy; 
sensitivity statistics 

(Aggregate) 

10-fold cross 

validation 
• RF performs better than MNL 

Lindner et al. 

(2017) 
Sao Paulo, Brazil O-D Survey 

Car/Motorcycle; 

Public transit 
CT; ANN BL 

Average prediction 

accuracy 

Training (70); 

Testing (30) 

• Percentage of correct 

prediction found: BL (74%); 

ANN-MLP (79%); CT (80%) 
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Study Study Area Data Source Mode(s) Considered 

Machine 

Learning 

Methods Used 

Classical 

Methods 

Used 

Comparison 

Metrics  

(Level of Prediction) 

Training and 

Testing Data 
Findings 

Nam et al. 
(2017) 

Switzerland 

Mode choice 
survey of long-

distance travel 

(stated 
preference) 

Car, rail. Metro 

ANN;  

ANN – MLP; 

DNN 

NL; 
CNL 

Log-likelihood 
(Disaggregate) 

% of correct 

predictions 
(Aggregate) 

- 

• Percentage of correct 

prediction found: NL (64%); 

CNL (64%); ANN-MLP (59-
63%); DNN (65-67%) 

Zhu et al. 

(2018) 

Washington and 

Baltimore, USA 

Household travel 

survey 

Public transit, car 

driver, car passenger, 

walk/bike 

BN; DT NL 
Match rate 

(Disaggregate) 

5 subsets for 

cross-validation 

• Success rate found: NL 

(~47%); BN (45-47%); DT 

(44-45%)) 

Cheng et al. 

(2019) 

Nanjing, 

China 

Household travel 

suvey 

Walk, bicycle, e-
motorcycle, public 

transport, automobile 

RF; SVM; 

Boosting 
MNL Accuracy; MAPE 

Training (80%); 

Testing (20%) 
• RF and SVM provide the best 

prediction accuracy 

Freight 

Abdelwahab 

and Sayed 
(1999) 

USA 

Commodity 

Transportation 
Survey 

Rail, truck ANN BL; BP 
Success rate 

(Aggregate) 

Training 

(1,000); Testing 
(586) 

• ANN provides equal or higher 

predictive accuracies 

Sayed and 

Razavi (2000) 
USA 

Commodity 

Transportation 
Survey 

Rail, truck 

ANN; 

Neuro Fuzzy 
approach 

(Adaptive B-

spline 
networks) 

BL 
Success rate 

(Aggregate) 

Training 

(5,000); Testing 
(2500) 

• Neuro Fuzzy uses fewer 

variables than others to 
achieve the same predictive 

accuracy of the other models 

Sayed et al. 
(2003) 

USA 

Commodity 

Transportation 

Survey 

Rail, truck 

ANFIS; 
B-Spline 

associative 

memory 
networks 

--- 
Success rate 
(Aggregate) 

Training 

(5,000); Testing 

(2500) 

• B-Spline AMN require fewer 

variables to achieve the same 

performance 

Tortum et. al. 

(2009) 

Turkey, 

Germany, 
France, Austria 

Freight flow data 

compiled from 
multiple sources 

Rail, truck 
ANFIS; 

ANN-MLP 

LR;  

MRM 
 (Aggregate) 

Training (80); 

Testing (20%) 

• ANN and ANFIS models 

perform better than the 

classical models 

* ANFIS = Adaptive Neuro Fuzzy Inference System; ANN-MLP = Artificial Neural Network - Multi-Layer Perceptron; ANN-RBF = Artificial Neural Network - Radial Basis Function; BL = Binary 

Logit; BN = Bayesian Network; BP = Binary Probit; CART = Classification and Regression Tree; CNL = Cross nested logit; CT = Classification Tree; DNN = Deep Neural Network; DT = Decision Tree; 

ENN = Evidential Neural Network; FNN = Feedforward Neural Network; k-NN = K-Nearest Neighbors; LR = Linear Regression; MAPE = Mean Absolute Percent Error; MR = Multiple Regression; 

MSE = Mean Square Error; NB = Naïve Bayes; NL = Nested logit; O-D = Origin-Destination; RF = Random Forrest; RMSE = Root Mean Square Error; SOV = Single Occupant Vehicle; SVM = Support 

Vector Machine 
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TABLE 2 Description of the variables 

Variable Description 

Mode Shipment mode (for-hire truck, private truck, parcel service, air, and other) 

Size Weight of shipment in lbs (≤30, 31–200, 201–1000, 1001–5000, 500–30000, 30001–45000, >45000) 

Value Value of shipment in $ (<300, 300-1000, 1001-5000, >5000) 

Distance 
Routed distance between shipment origin and destination in miles (<100, 100–249, 250–499, 500–749, 750–

999, 1000–1499, 1500–2000, >2000) 

Commodity type 
SCTG commodity group (raw food; prepared products; stone and non-metallic minerals; petroleum and coal; 

chemical products; wood, papers and textiles; metals and machinery; electronics; and furniture and others) 

HAZMAT Hazardous materials (Class 3.0 Hazmat, other hazmat, and not hazmat) 

Temperature-controlled Temperature controlled shipment (yes, no) 

Export Export shipment (yes, no) 

Origin CFS CFS area of shipment origin (132 areas) 

Destination CFS CFS area of shipment destination (132 areas) 

NAICS Industry classification of shipper (45 classes) 

Origin employee Density of employees at origin 

Origin warehouse Number of warehouse and super center at origin 

Origin highway Density of highway at origin (mile/mile2) 

Origin railway Density of railway at origin (mile/mile2) 

Origin temperature Average temperature at origin in °F (≤60, >60) 

Destination population Population density at destination (1000 pop/mile2) 

Destination income Mean household income at destination in $ (≥50,000, <50,000) 

Destination temperature Average temperature at destination in °F (≤60, >60) 

Destination highway Density of highway at destination (mile/mile2) 

Destination railway Density of railway at destination (mile/mile2) 
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TABLE 3 Performance of classifiers under different sample sizes 

Sample 

Size 
Freight Mode RF  

 BAG  
 BOOST  

  Precision Recall 
F1-

score 
 Precision Recall 

F1-

score 
 Precision Recall 

F1-

score 

136,073 For-hire truck 0.54 0.41 0.46  0.53 0.4 0.45  0.74 0.34 0.46 

 Private truck 0.74 0.79 0.76  0.73 0.76 0.75  0.74 0.81 0.78 

 Parcel service 0.83 0.88 0.85  0.83 0.89 0.86  0.82 0.93 0.87 

 Air 0.14 0.04 0.07  0.13 0.05 0.08  0.54 0.05 0.09 

 Other mode 0.66 0.3 0.42  0.54 0.38 0.45  0.7 0.2 0.31 

             

226,785 For-hire truck 0.59 0.46 0.52  0.55 0.49 0.52  0.75 0.29 0.41 

 Private truck 0.8 0.83 0.82  0.8 0.83 0.81  0.75 0.86 0.8 

 Parcel service 0.86 0.92 0.89  0.87 0.89 0.88  0.84 0.94 0.89 

 Air 0.36 0.09 0.14  0.36 0.15 0.21  0.32 0.06 0.1 

 Other mode 0.64 0.29 0.4  0.59 0.34 0.43  0.63 0.22 0.32 

             

453,574 For-hire truck 0.58 0.48 0.52  0.6 0.51 0.55  0.76 0.3 0.43 

 Private truck 0.78 0.81 0.8  0.79 0.8 0.8  0.74 0.84 0.78 

 Parcel service 0.85 0.9 0.87  0.86 0.9 0.88  0.83 0.94 0.88 

 Air 0.28 0.09 0.14  0.35 0.1 0.15  0.19 0.02 0.04 

 Other mode 0.77 0.4 0.53  0.67 0.44 0.53  0.56 0.23 0.32 

             

907,139 For-hire truck 0.63 0.52 0.57  0.62 0.55 0.58  0.79 0.32 0.46 

 Private truck 0.81 0.84 0.82  0.82 0.84 0.83  0.76 0.84 0.8 

 Parcel service 0.86 0.91 0.89  0.87 0.9 0.89  0.83 0.95 0.89 

 Air 0.39 0.13 0.19  0.39 0.14 0.2  0.4 0.02 0.04 

 Other mode 0.74 0.49 0.59  0.74 0.55 0.63  0.61 0.3 0.4 

             

1,360,706 For-hire truck 0.64 0.54 0.58  0.65 0.55 0.6  0.73 0.28 0.41 

 Private truck 0.82 0.85 0.83  0.81 0.85 0.83  0.74 0.83 0.78 

 Parcel service 0.87 0.91 0.89  0.88 0.9 0.89  0.82 0.94 0.87 

 Air 0.35 0.16 0.22  0.25 0.19 0.22  0.48 0.07 0.12 

 Other mode 0.77 0.5 0.61  0.76 0.55 0.63  0.69 0.25 0.37 

             

1,814,271 For-hire truck 0.65 0.55 0.6  0.65 0.56 0.6  0.76 0.29 0.42 

 Private truck 0.82 0.86 0.84  0.83 0.86 0.84  0.75 0.84 0.79 

 Parcel service 0.88 0.91 0.9  0.88 0.91 0.9  0.83 0.95 0.88 

 Air 0.33 0.15 0.21  0.42 0.17 0.25  0.45 0.05 0.1 

 Other mode 0.76 0.55 0.64  0.75 0.56 0.64  0.55 0.24 0.33 

             

2,267,842 For-hire truck 0.69 0.56 0.62  0.68 0.58 0.62  0.79 0.3 0.43 

 Private truck 0.83 0.87 0.85  0.84 0.87 0.86  0.76 0.83 0.79 

 Parcel service 0.87 0.91 0.89  0.88 0.91 0.89  0.81 0.95 0.87 

 Air 0.5 0.23 0.32  0.42 0.26 0.32  0.52 0.05 0.1 

 Other mode 0.78 0.58 0.66  0.75 0.6 0.67  0.58 0.24 0.34 

 

 

 


