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ABSTRACT

Freight activities are directly related to a country’s Gross Domestic Product and
economic viability. In recent years, the U.S. transportation system supports a growing
volume of freight, and it is anticipated that this trend will continue in the coming years.
To support the projected increase in freight volume, an efficient, reliable, and low-cost
freight logistics system is necessary to keep the U.S. competitive in the global market. In
addition, intermodal transport is becoming an increasingly attractive alternative to
shippers, and this trend is likely to continue as state and federal agencies are considering
policies to induce a freight modal shift from road to intermodal to alleviate highway
congestion and emissions. However, the U.S. intermodal freight transport network is
vulnerable to various disruptions. A disruptive event can be a natural disaster or a man-
made disaster. A number of such disasters have occurred recently that severely impacted
the freight transport network. To this end, this dissertation presents four studies where
mathematical models are developed for the road-rail intermodal freight transport
considering the network uncertainties.

The first study proposes a methodology for freight traffic assignment in large-
scale road-rail intermodal networks. To obtain the user-equilibrium freight flows,
gradient projection (GP) algorithm is proposed. The developed methodology is tested on
the U.S. intermodal network using the 2007 freight demands for truck, rail, and road-rail
intermodal from the Freight Analysis Framework, version 3, (FAF3). The results

indicate that the proposed methodology’s projected flow pattern is similar to the FAF3



assignment. The second study formulates a stochastic model for the aforementioned
freight traffic assignment problem under uncertainty. To solve this challenging problem,
an algorithmic framework, involving the sample average approximation and GP
algorithm, is proposed. The experiments consider four types of natural disasters that
have different risks and impacts on the transportation network: earthquake, hurricane,
tornado, and flood. The results demonstrate the feasibility of the model and algorithmic
framework to obtain freight flows for a realistic-sized network in reasonable time.

The third study presents a model for the routing of multicommodity freight in an
intermodal network under disruptions. A stochastic mixed integer program is formulated,
which minimizes not only operational costs of different modes and transfer costs at
terminals but also penalty costs associated with unsatisfied demands. The routes
generated by the model are found to be more robust than those typically used by freight
carriers.

Lastly, the fourth study develops a model to reliably route freight in a road-rail
intermodal network. Specifically, the model seeks to provide the optimal route via road
segments, rail segments, and intermodal terminals for freight when the network is subject
to capacity uncertainties. The proposed methodology is demonstrated using a real-world

intermodal network in the Gulf Coast, Southeastern, and Mid-Atlantic regions of the U.S.

Vi
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CHAPTER 1

INTRODUCTION

Freight transportation is a vital component of the U.S. economy. Its chief role is
to move raw materials and products in an efficient manner (Hall, 2003). The U.S. has the
largest freight transportation system in the world (Research and Innovative Technology
Administration, 2010). In 2015, it moved a daily average of about 49.3 million tons of
freight valued at more than $52.5 billion and the freight tonnage is projected to increase
at about 1.4 percent per year between 2015 and 2045 (Bureau of Transportation Statistics,
2017). The majority of the freight shipments were transported by truck and rail (70% and
16%, respectively, in terms of tonnage). The average distance for freight shipment
transported by truck was 216 miles and by rail was 811 miles in 2012 (Bureau of
Transportation Statistics, 2018); this shows the long-haul nature of the rail mode.

Intermodal transport is a special type of multimodal transport where freight is
transported from an origin to a destination in a container (Huynh et al., 2017).
Consequently, there is no need for handling of the goods when changing modes.
Intermodal transport is becoming an increasingly attractive alternative to shippers in
recent years. It is anticipated that this increasing intermodal trend is likely to continue as
state and federal agencies are considering policies to induce a freight modal shift from
road to intermodal. Moreover, greater use of intermodal can yield significant social
benefits such as enhanced highway safety, reduction in need for building highways, etc.

(Brown and Hatch, 2002).



Given that the majority of freight is transported via truck mode, freight
transportation has significant impact on road traffic safety (Uddin and Ahmed, 2018;
Uddin and Huynh, 2017, 2018), pavement performance (Rahman et al., 2017; Rahman
and Gassman, 2018), and environment (Winebrake et al., 2008a, 2008b). In the near
future, the projected increase in freight volume will stress both public and private
infrastructures (Strocko et al., 2013), which in turn will negatively impact the above-
mentioned areas.  Intermodal freight could help alleviate the increased truck
transportation-related issues.

Transportation infrastructures, particularly those supporting intermodal freight,
are vulnerable to natural disasters and man-made disasters. These disruptions can
drastically degrade the capacity of a transportation mode and consequently have adverse
impacts on intermodal freight transport and freight supply chain. For these reasons,
adequate redundancy in the freight transport network is needed to prevent significant
service losses in the event of a disruption (Uddin and Huynh, 2019; Uddin et al., 2019).

An efficient, reliable, and low-cost freight logistics system is necessary to keep
the U.S. competitive in the global market. To this end, this dissertation develops
mathematical models for freight assignment and routing in road-rail intermodal
transportation, with the consideration of network uncertainties arising from disasters or

disruptions.

1.1 RESEARCH PROJECT | — INTERMODAL FREIGHT ASSIGNMENT
This study develops a methodology for freight traffic assignment in large-scale

road-rail intermodal networks. To obtain the user-equilibrium freight flows, a path-based



traffic assignment algorithm, gradient projection (GP), is proposed. The developed
methodology is tested on the U.S. intermodal network using the 2007 freight demands for
truck, rail, and road-rail intermodal from the Freight Analysis Framework, version 3,
(FAF3). The results indicate that the proposed methodology’s projected flow pattern is
similar to the FAF3 assignment. The proposed methodology could be used by
transportation planners and decision makers to forecast freight flows and to evaluate

strategic network expansion options.

1.2 RESEARCH PROJECT Il — INTERMODAL FREIGHT ASSIGNMENT UNDER
UNCERTAINTY

This study presents a methodology for freight traffic assignment in a large-scale
road-rail intermodal network under uncertainty. A stochastic model is formulated to
obtain the user-equilibrium freight flows. To solve this challenging problem, an
algorithmic framework, involving the sample average approximation (SAA) and GP
algorithm, is proposed. The developed methodology is tested on the U.S. intermodal
network with freight flow data from the FAF3. The experiments considered four types of
natural disasters that have different risks and impacts on the transportation network:
earthquake, hurricane, tornado, and flood. The results demonstrate the feasibility of the
model and algorithmic framework to obtain freight flows for a realistic-sized network in
reasonable time. It is found that for all disaster scenarios the freight ton-miles are higher

compared to the base case without uncertainty.



1.3 RESEARCH PROJECT Il — INTERMODAL FREIGHT ROUTING UNDER
DISRUPTIONS

This study presents a mathematical model for the routing of multicommodity
freight in an intermodal network under disruptions. A stochastic mixed integer program
is formulated, which minimizes not only operational costs of different modes and transfer
costs at terminals but also penalty costs associated with unsatisfied demands. The SAA
algorithm is used to solve this challenging problem. The developed model is applied to
an actual intermodal network in the Gulf Coast, Southeastern and Mid-Atlantic regions of
the U.S., to demonstrate its applicability, with explicit consideration of disruptions at
links, nodes, and terminals. The model results indicate that under disruptions, goods in
the study region should be shipped via road-rail intermodal due to the built-in redundancy
of the freight transport network. Additionally, the routes generated by the model are

found to be more robust than those typically used by freight carriers.

1.4 RESEARCH PROJECT IV — RELIABLE ROUTING OF INTERMODAL FREIGHT
UNDER UNCERTAINTY

To address freight service disruption, this study develops a model to reliably route
freight in a road-rail intermodal network. Specifically, the model seeks to provide the
optimal route via road segments, rail segments, and intermodal terminals for freight when
the network is subject to capacity uncertainties. A major contribution of this work is that
a framework is provided to allow decision makers to determine the amount of capacity
reduction to consider in planning routes to obtain a user-specified reliability level. The

proposed methodology is demonstrated using a real-world intermodal network in the Gulf



Coast, Southeastern, and Mid-Atlantic regions of the U.S. It is found that the total
system cost increases with the level of capacity uncertainty and with increased

confidence levels for disruptions at links, nodes, and intermodal terminals.

1.5 LIST OF PAPERS AND STRUCTURE OF DISSERTATION
This dissertation includes four research papers, and these papers appear as
separate chapters. They are:

1. Uddin, M., & Huynh, N. (2015). Freight traffic assignment methodology for
large-scale road-rail intermodal networks. Transportation Research Record, 2477,
50-57.

2. Uddin, M., & Huynh, N. (2016). Routing model for multicommaodity freight in an
intermodal network under disruptions. Transportation Research Record, 2548,
71-80.

3. Uddin, M., & Huynh, N. (2019). Reliable routing of road-rail intermodal freight
under uncertainty. Networks and Spatial Economics. Advance online publication.

4. Uddin, M., Huynh, N., & Ahmed, F. (2019+). Assignment of freight traffic in a
large-scale intermodal network under uncertainty. Journal of Transportation
Engineering, Part A: Systems (under review).

The remaining chapters are organized as follows: Chapters 2 to 5 include the four
research projects mentioned above. Lastly, Chapter 6 provides concluding remarks and

future research direction.



CHAPTER 2

INTERMODAL FREIGHT ASSIGNMENT?

With the growth of intermodal transportation, there is a need by transportation
planners and decision makers to forecast freight flows on the intermodal networks and to
evaluate strategic network expansion options. Furthermore, well-informed infrastructure,
economic, and environmental planning depends on effective freight forecasting (Chow et
al., 2014) which is obtained from the freight assignment step. The multimodal nature of
the freight movement presents an additional layer of complexity to the freight assignment
problem. Additionally, freight demand and cost data are not as readily available. To this
end, this chapter proposes an integrated freight assignment methodology that considers
road, rail and intermodal shipments.

The assignment of freight over multimodal networks has been studied by many
researchers in the past few decades. Crainic et al. (1984) developed a nonlinear
optimization model to route freight train, schedule train services and allocate
classification work between yards. Guelat et al. (1990) proposed a Gauss-Seidel-Linear
approximation algorithm to assign multiproduct in a multimode network for strategic
planning. Their algorithm was implemented in a strategic analysis tool named “strategic
transportation analysis (STAN)” and solved a system-optimal (SO) problem with the

objective of minimizing the total cost at arcs and node transfer. Their solution algorithm

This chapter has been adapted from “Uddin, M., & Huynh, N. (2015). Freight traffic assignment
methodology for large-scale road-rail intermodal networks. Transportation Research Record, 2477, 50—
57.” Reprinted here following SAGE’s Green Open Access policy.



considered intermodal transfer costs in the computation of shortest paths. Chow et al.
(2014) used a variant of STAN for the freight assignment and calibrated their model to
work for both user-equilibrium (UE) and SO conditions.

The freight network equilibrium model (FNEM) developed by Friesz et al. (1986)
considered the combined role of shipper-carrier. Using the shipper and carrier sub-
models FNEM provided the route choice decisions for both shippers and carriers on a
multimodal freight network with nonlinear cost and delay function. By solving a
variational inequality (V1) problem on the railway network Fernandez et al. (2004)
developed a strategic railway freight assignment model. Agrawal and Ziliaskopoulos
(2006) also used the VI approach for freight assignment to achieve market equilibrium
where no shipper can reduce its cost by changing carrier. In their model, shippers were
assumed to have UE behavior with the objective of minimizing cost without any
consideration about other shippers in the market, whereas carriers followed a SO
behavior with the objective of optimizing their system (i.e., complete operation).

Loureiro and Ralston (1996) proposed a multi-commodity multimodal network
design model to use as a strategic planning tool; the model assumed that the goods are
shipped at minimum total generalized cost and used path-based UE assignment algorithm
to assign freight flows over the network. Kornhauser and Bodden (1983) analyzed
highway and intermodal railway-highway freight network by routing freight over the
network using a minimum cost path-finding algorithm and presented results as density
map. Arnold et al. (2004) proposed a modeling framework for road-rail intermodal
network, but the main purpose of their model was to optimally locate intermodal

terminals by minimizing transportation cost of shipments. Mahmassani et al. (2007)



developed a dynamic freight network simulation-assignment model for the analysis of
multiproduct intermodal freight transportation systems. The intermodal shortest path was
calculated based on the link travel costs and node transfer delays. Zhang et al. (2008)
validated the Mahmassani et al. model by applying it to a Pan-European rail network.
Using a bi-level programming, where lower-level problem finds the multimodal
multiclass user traffic assignment and upper-level problem determines the maximum
benefit-cost ratio yielding network improvement actions, Yamada et al. (2009) developed
a multimodal freight network model for strategic transportation planning. Chang (2008)
formulated a route selection problem for international intermodal shipments considering
multimodal multi-commodity flow. The model was formulated to consider multiple
objectives, scheduled modes and demanded delivery times, and economies of scale.
Hwang and Ouyang (2014) used the UE approach to assign freight shipments onto rail
networks which were represented as directed graphs.

Based on the above review, to date, no model has been developed to
comprehensively assign freight flows that are transported via multiple modes (road-only,
rail-only, and road-rail intermodal) under equilibrium conditions. This study seeks to fill
this gap in the literature by developing such a model. Specifically, given a set of freight
demands between origins and destinations and designated modes (road-only, rail-only,
and intermodal), the model seeks an equilibrium assignment that minimizes the total
transportation cost (i.e., travel time) for the freight transport network. To solve the
proposed model, a path-based algorithm, based on the gradient projection (GP) algorithm

proposed by Jayakrishnan et al. (1994), is adopted. The GP algorithm is chosen because



it has been shown to converge faster than the conventional Frank-Wolfe algorithm (Frank
and Wolfe, 1956) and outperform other path-based algorithms (Chen et al., 2002).

To model congestion effects in a network at the planning level, link performance
functions are often used, which express the travel time on a link as a function of link
flow. For highways, the standard Bureau of Public Road link performance function is
commonly used. For rail, Borndérfer et al. (2013) suggested a link performance function
for freight rail network. When applying these types of functions, it is necessary to
calibrate the parameters to capture local and regional effects. In this study, the function
proposed by Bornddrfer et al. is adopted and calibrated to reflect characteristics of the
U.S. rail infrastructure.

To validate the proposed model, the projected equilibrium freight flow pattern on
the U.S. intermodal network is compared against the Freight Analysis Framework,
version 3, (FAF3) network flow assignment pattern. FAF3 is the most comprehensive
public source of freight data in the U.S. (Southworth et al., 2011). It should be noted that
the FAF3 flow values are not absolute. Rather, the FAF3 flows are estimated using
models that disaggregate interregional flows into flows between localities and then these
flows are assigned to individual highways using average payloads per truck to produce

truck counts. Thus, the FAF3 flow values could be different from actual truck counts.

2.1 MODELING AND ALGORITHMIC FRAMEWORK
This study takes a system’s view and assumes that in the long run the activities
carried out by shippers and carriers will lead to equilibrium where the cost of any

shipment cannot be lowered by changing mode and/or route. The freight logistics



problem has two levels. The first and upper level involves decisions by shippers in

selecting a carrier, and the second and lower level involves decisions by the carriers in

minimizing the shipment times. The modeling framework proposed here (i.e., freight

traffic assignment) is for the lower level. Therefore, it is assumed, the cost on all used

paths via different modes (road-only, rail-only, and intermodal) is equal for each origin-

destination (OD) demand pair and equal to or less than the cost on any unused path at

equilibrium (Sheffi, 1985).

2.1.1 Notation

N

set of nodes in the network
set of links in the network

set of freight zone centroid nodes in the network
set of road nodes in the network

set of rail nodes in the network

set of road links in the network

set of rail links in the network

set of terminal links in the network

set of origins in the network, R< N

set of destinations in the network, S < N

origin zone index, r eR

destination zone index, s€S

flowon link a, aeA

10



t,(w) travel time on link a for a flow of @
f¢>  flow on path k connecting r and s

f{f; flow on shortest path connecting r and s

qe’ freight truck demand from r to s

q° freight train demand from r to s

q° freight intermodal demand from r to s

K{®  setof paths with positive truck flow from r to s
K/®  setof paths with positive train flow from r to s

K{®  set of paths with positive intermodal flow from r to s

T set of available terminals for transfer of shipments

2.1.2 Formulation

Consider a network which is represented by a directed graph G =(N, A), where N
is the set of nodal points of the network (N=N_,UN, UN,), while A is the set of links
joining them in the network (A=A UA UA;). In the network, nodal points are made of
three node sets: zone centroid represented by nodes (N,), road intersections (N, ), and
rail junctions (N,). On the other hand, network links are formed by three sets: road
segments (A), rail tracks (A), and terminal transfer links (A;). Note that road-rail

intermodal terminals are modeled as links and that flows are bi-directional on these links.

Furthermore, their end nodes have different modes (one from the set N, and the other

from the set N,). For truck traffic demand g;° from origin r R to destination ses and

11



a set of paths that connect r to s for each OD pair K,*, the independent variables are a

set of path flows f,”° that satisfy the demand ( z f°=q"

keK{®

J. Similarly, the path flows

for train and intermodal on path-sets, K* and K.*, satisfy their respective demands (q,°

and g°) from r to s. Note that the path-set for intermodal consists of paths formed by

links from both road and rail segments of the network. Therefore, the total freight flow

on a road segment (a€A) is the sum of the road-only flows and intermodal flows.

Similarly, the total freight flow on a rail segment (a< A ) is the sum of the rail-only and

intermodal flows. The user-equilibrium model for this problem is formulated as follows.

Min 2 =3 [“t(@)do+ [ t,(@)do
aeA acA

Subject to

kars:qtrs, VreR,seS

keK®

> f=q"®  VreR,seS

keK®

> f=q"  VreRseS

keK®

=22, 2 f0a+ 2.2 D 65 VacA
reR seS kekK,*® reRseS keK®

T3 IPILED 2 3p WL RPN
reRseS keK*® reRsesS keK®

fo >0, VkeK® keKF keK" reR,seS

1 if link a is on path k connecting rand s

where, §,; = .
0 otherwise

12

(2.1)

(2.2)

(2.3)

(2.4)
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The objective function (2.1) states that the total travel time for both segments
(road and rail) associated with the flows between origins and destinations are to be
minimized. Constraints (2.2) to (2.4) ensure that all freight demands are assigned to the
network. Constraints (2.5) and (2.6) are definitional constraints that compute link flows.
Lastly, constraint (2.7) ensures non-negative flows.

To model congestion effects in a network at the planning level, link performance
functions are often used, which express the travel time on a link as a function of link
flow. For highways, the standard Bureau of Public Road link performance function,
named after the agency which developed it, is commonly used. For rail, a few functions
have been proposed (Hwang and Ouyang, 2014; Krueger, 1999; Lai and Barkan, 2009).
Borndorfer et al. (2013) suggested a link performance function for freight rail network.
When applying these types of functions, it is necessary to calibrate the parameters to
capture local and regional effects. In this study, the function proposed by Borndorfer et
al. is adopted and calibrated to reflect characteristics of the U.S. rail infrastructure. The

link performance functions have the following form:

t(x,) :to{u 0.15(§ } Vae A (2.8)

a

X B
ta (Xa) = to,I Ll_'_ (C_a)

where t,, and t,, are the free-flow travel time for road and rail links, respectively, and

Yae A (29)

C, is the capacity of the link. In equation (2.9), f represents the penalty rate and its value

can be 2, 4, 7, 15 (Borndorfer et al., 2013). In this study g is calibrated to capture

characteristics of the rail segment of the U.S. intermodal network. Calibration involved

13



changing the value of £ such that the computed train delay resulted in realistic flow
pattern. The functional form of equation (2.9) indicates that the travel time on rail links
is more sensitive to flow when it is near capacity than that of road links.

Figure 2.1 illustrates the methodology used to calculate the intermodal shortest
path. Figure 2.1a shows the typical intermodal freight transport elements that are used to
ship goods from an origin to a destination; a typical shipment would go through two
intermodal terminals. Figure 2.1b shows the corresponding network structure. The

intermodal path is made up of the node sequence: b »c—-d —-e— f —g. Thus, given
b and g, the objective of the shortest path algorithm is to find nodes c, d, e, and f

that result in the least travel time. Delays are incurred at intermodal terminals due to the
transfer of modes and storage. This terminal delay is considered as terminal link delay

(t,, Vae A;) in the path travel time calculation.

acd
,“EAf AN acd
Origin Terminal| BERRERRRRREREN ITerminal Destination
(a)
aed acd
e acs 5
o el L L L ebgr 954 e
gl —Jrrrrrrerrrerrerrt e Kot
Origin Terminal Terminal Destination
(b)

Figure 2.1 Shortest path calculation considering terminal: (a) basic intermodal structure
and (b) modeled structure.

2.1.3 Solution Algorithm
A path-based algorithm (gradient projection) is used to solve the proposed user-

equilibrium assignment problem. The adopted gradient projection algorithm is based on
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the Goldstein-Levitin-Polyak gradient projection method formulated by Bertsekas (1976)
and modified by Jayakrishnan et al. (1994) to solve the traffic assignment problem. In
this study, this algorithm is further modified to address the assignment of freight demands
that can be transported via three different modes: road-only, rail-only, and intermodal.
Additionally, the algorithm is modified to consider intermodal terminals in the network.
The iterative steps of the algorithm are as follows:

Step 0. Initialization.
Set t, =t,(0), VaeA and select terminals for all OD pairs. Assign OD demands q°, q,°,
and g;°on the shortest path calculated based on t,, Vac A, t,, Vac A, and t,, VacA,
respectively and initialize the path-sets K.*, K,*, and K;*with the corresponding shortest
path for each OD pair (r,s). This yields path flows and link flows. Set iteration counter
n=1.
Step 1. For each OD pair (r,s):

Step 1.1. Update.

Set t,(n)=t,(x,(n)),VaeA. Update the first derivative lengths (i.e., path travel
times at current flow): d;’(n), vk e K{*, d;’(n), Vk e K*, and d;’(n), Vk e K.
Step 1.2. Direction finding.

Find the shortest path ki (n) based on t,(n), Yae A . If different from all the

paths in K, add it to K{® and record dar'ss( . If not, tag the shortest among the

paths in K as ki (n).
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Repeat this procedure for K* and K to find d{,i() and d%_f;() based on

t,(n), vae A and t,(n), Vae A, respectively.
Step 1.3. Move.

Set the new path flows for K,*.

rs _ rs _ a(n) ( rs LS
fo(n +1)_max{0, f.o(n) () d (n) dmn)

j} ke Kk = ki

where, s&(n)=>_ a, (n) , VkeK”

= 0, (n)
a denotes links that are on either k or ki , but not on both. a(n) is the step-size.

Also, 5+ =g =D f(n+1),  VkeKS k= ke (n)

Follow this procedure to find new path flows for K;* and K.
From path flows find the link flows x,(n+1).

Step 2. Convergence test.
If the convergence criterion is met, stop. Else, set n=n+1 and go to step 1.

For rail networks, the same infrastructure (i.e., rail tracks) is often shared by
traffic flow in both directions. To model this feature, two separate directed links in
opposite directions are used instead of one bi-directional link. These two links share the
same properties such as length and capacity. Moreover, the link delay on any one link is
dependent on the flow on it, as well as the flow on the opposite link (see Hwang and
Ouyang (2014) for details). Due to the use of this modeling method, the link
performance function shown in equation (2.9) needs to be modified. The modified

version is shown in equation (2.10), where x_ is the link flow from node i to node j
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and x, is the flow from node j to node i. Equation (2.1) also needs to be modified and

its modified version is shown in equation (2.11). The rest of the model is the same and

the above solution algorithm remains applicable for solving the modified model.

s
£, (X, +X,) =1, Ll{xagxa'J ] VaeA (2.10)
Z-= zjoxf‘ t (0)dow + Zjox”x’ t (o) dw (2.11)
aehA aeh

The proposed model provides a general framework for addressing different types
of freight transport networks and situations. While the highway mode generally allows
truck to provide door-to-door service, there may be some situations where trucks are not
allowed to traverse certain segments in the network. Similarly, certain rail track
segments may be accessible or available to shippers. The proposed model can address
this by restricting those links in shortest path calculation, and thus, those restricted links
are not considered in the assignment process. The model can also address the situations
when some intermodal terminals are not available for routing shipments between certain

OD demand pairs. This can be done by excluding those terminals from the set (T) for an

OD demand pair during terminal selection (i.e., initialization step of solution algorithm).

2.1.4 Special Case (Intermodal Demand Only)

The proposed model is also applicable for intermodal freight demand assignment,
with a few modifications. Given all the network elements and demand (gq°), the

intermodal assignment problem is as follows:

Min z = Zjo“ t (0)do + Zjox‘"‘ t, (o) do (2.12)

achA achA
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Subject to

> £°=q°, VreRseS (2.13)

keK®

X, =Y. > > f%5s, VaeA (2.14)

reRseS keK/®
f° >0, VkeK” reR,seS (2.15)
The solution algorithm described previously is also applicable for solving

problem (2.12) to (2.15). However, path-set K* and shipment demand q;* should be

considered in the solution algorithm instead of three path-sets and three demands.

2.2 APPLICATION

To demonstrate the validity of the proposed methodology, the model is applied to
the U.S. intermodal network created by Oak Ridge National Laboratory (Center for
Transportation Analysis, 2014). Without loss of generality, the network is modified to
retain only the primary elements of the network. The assignment problem is investigated
from a strategic perspective. Thus, freight flows are assigned to the entire freight
transport network without considering any restrictions on highway links, rail links, and

intermodal terminals.

2.2.1 Network Description

The intermodal network considered is shown in Figure 2.2. Part (a) shows the
detailed version, and part (b) shows the simplified version. The intermodal network
comprises the U.S. interstates, Class | railroads and road-rail terminals. The squares

represent freight zone centroids. The circles represent road-rail terminals. The black
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lines represent interstates, and the gray lines represent Class | railroads. The simplified
network has a total of 1532 links and 301 nodes. The nodes include 120 centroids, 97

road intersections, and 84 rail junctions.

(b)

Figure 2.2 Road-rail transportation networks in the contiguous U.S.: (a) detailed network
and (b) simplified network.
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Attributes of the network elements include link lengths, number of tracks, type of
control for rail links, etc. The free-flow speed for the road links is calculated using the
equation provided in the NCHRP Report 387 (Dowling et al., 1997) which requires speed
limit as an input. For the rail links, the maximum speed for freight train is taken as 60
mph (Krueger, 1999). Free-flow travel times for links are calculated using free-flow
speeds. Capacities for the rail links are obtained using the number of tracks and type of
control for corresponding rail links (Cambridge Systematics, 2007). For rural interstates
and urban interstates, a capacity of 21,000 vehicle/lane/day and 19,500 vehicle/lane/day
is used, respectively (Standifer and Walton, 2000). Rail links are assumed to have full
capacity, whereas road links are assumed to have reduced capacity due to congestion. In
the network considered, contiguous U.S., the total number of freight zones is 120, and
hence it is assumed that there are 14,400 possible OD demand pairs in the network. The
freight demands for all OD pairs are obtained from the FAF3 database (Federal Highway
Administration, 2013).

The FAF3 procedure to convert tonnage to truck counts (Oak Ridge National
Laboratory, 2013) is used in this study and the key steps are summarized here: (i)
compute distance between origin and destination centroid, (ii) using truck allocation
factors based on five distance ranges allocate tonnage to five truck types, (iii) convert
tonnage assigned to each truck type into their equivalent annual truck traffic values using
the truck equivalency factors, which is based on 9 truck body types, (iv) find empty trips
using empty truck factors and add empty trips to the loaded trips, (v) aggregate the total
annual truck traffic for all body styles together for each truck types, and (vi) sum the

traffic for all the truck types. The output of this conversion process is the overall annual
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truck traffic between the origin and destination. This procedure is carried out for all the
demands that are transported by trucks.

The procedure to convert tonnage to trainloads developed by Hwang (2014) is
used in this study. The conversion steps are: (i) group FAF commodity types into 10
types based on similarities, (ii) convert tonnage into equivalent trainloads using average
loading weight factors for each commodity group, and (iii) sum the trainloads for all
commodity groups. This procedure is carried out for all the demands that are transported
by rail.

FAF3 does not provide intermodal demand directly. Thus, to obtain this
information the demand recorded as being transported by “multiple modes and mail” is
used. To estimate the intermodal demand from this source, several filters are applied.
The data are filtered to include only those commodities typically transported via
intermodal (Cambridge Systematics, 2007) and only those shipments with a distance of
500 miles or greater (Slack, 1990). The average load for a container/trailer is used for
conversion, and the average train length in terms of TOFC/COFC count (Cambridge
Systematics, 2007) is used to determine the number of intermodal trains equivalent to
trucks hauled. The conversion methodology is as follows: (i) sort commodities
transported by intermodal trains, (ii) convert tonnage of those commodities into
equivalent container/trailer using average loading capacity, (iii) sum all container/trailer
counts, and (iv) convert container/trailer counts to equivalent trainloads using average
train length information. In intermodal transportation, truck haulage takes place from
origin to delivery terminal and then from receiving terminal to destination. Therefore,

every intermodal truck trip generates an empty truck trip. Thus, the number of
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container/trailer is doubled to obtain the intermodal truck flow. This procedure is carried
out for all the demands that are transported via intermodal.

The conversion procedures were coded in Excel VBA to create freight OD trip
tables for truck, rail, and intermodal in 120 x 120 x 3 matrix form. It is assumed that road
and rail infrastructure remain open for operation 365 days in a year. Using the
aforementioned data sources and procedures, it is determined that in a single day in the
base year (2007), there are 618,190 shipments transported by trucks, 1,415 shipments

transported by trains, and 12,474 shipments transported via intermodal.

2.2.2 Results and Discussions

The solution algorithm was coded in MATLAB, and the experiments were run on
a desktop computer with an Intel Core i7 3.40 GHz processor and 8 GB of RAM. The
terms in the objective function are normalized to yield consistent units. This was
accomplished by dividing the first term by the sum of truck demand and intermodal truck
demand and second term by the sum of train demand and intermodal train demand. The
stopping criterion used is the value of relative gap (change in value of objective function
with respect to the value in previous iteration). The algorithm converged after 10
iterations in 686.50 seconds with a relative gap of 10, At convergence the value of the
normalized objective function is 37.3594 hours. It should be noted that # = 4 is used here
in the calculation of rail link delay.

The model was also solved using a classical algorithm (Frank-Wolfe). The
Frank-Wolfe algorithm provides a normalized objective value of 37.3587 hours after 115

iterations and 2982.40 seconds of computational time. This result indicates that the
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gradient projection algorithm is much more effective than the Frank-Wolfe algorithm in
solving the proposed freight assignment model. This finding corroborates other studies
which reported that the gradient projection algorithm is superior to the Frank-Wolfe
algorithm (e.g., Jayakrishnan et al., 1994).

Among the four values tested for g, with g = 2 the flow on few links is very high,
S =T the flow is reasonable, but the algorithm takes longer to converge, and g = 15 the
flow results in very high travel time on some rail links. Therefore, for capturing freight
train delay in the U.S. rail network, f = 4 is most suitable. Table 2.1 shows the
percentage of link flow over capacity and link travel time of selected congested rail links,
which were used to determine the best value for 5. Note that, travel time is calculated

based on the flow on corresponding link and flow on link opposite to it.

Table 2.1 Comparison of S Values

Link (Rail) Percentage Increase in Flow over Capacity (Travel Time in Hour)
Index B=2 B=4 B=T7 p=15
76 43.3(10.1) 29 (7.9) 27 (6.6) 19.1 (39.9)
81 36 (9.6) 17 (9.5) 11.7 (8.4) 1.3 (11.5)
268 27.3(2.6) 8.8(2.2) 2.1(1.9) 4.1(2.5)
279 29.5 (6.6) 10.4 (6.1) 5.6 (6.2) 1(7.2)
392 30.3(11.2) 17.6 (8.8) 4.6 (5.2) 2.7 (15.5)

The resulting user-equilibrium flow for the road network is shown in Figure 2.3a
and for the rail network is shown in Figure 2.3b. In Figure 2.3, the volume and spatial

variation of freight traffic can be easily visualized by the thickness of the links.
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highway system for the year 2007.

FAF Truck Volume per Day
—(-5000 === 10000-15000 sm= 20000-25000
= 5000-10000 == 15000-20000

Freight Train per Day
— 015 ——25:50 === 100-200
— 15:25 == 150-100

(b)

Figure 2.3 Freight traffic assignment results: (a) truck on road network and (b) train on

rail network.

Figure 2.4a shows the FAF truck volume distribution on the U.S. national

locations at least 50 miles apart and trucks not included in the “multiple modes and mail”
(Federal Highway Administration, 2014). This truck flow pattern is very similar to the
proposed model’s projected user-equilibrium flow for the road network. Both maps

indicate that there is high truck flow on interstates that traverse through California,
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Washington, Texas, Arkansas, Tennessee, Georgia, Florida, Michigan, Illinois, Indiana,
New York, New Jersey, and Connecticut. This similarity suggests that the proposed
model is capable of forecasting actual truck flows.

Figure 2.4b shows the 2005 freight trains per day and 2007 passenger trains per
day on primary rail freight corridors in the U.S. (Cambridge Systematics, 2007). Though
the proposed model’s projected flow is only for freight train, this train flow pattern can be
compared against the projected flow due to the fact that freight train volume far
outnumbers passenger train volume in the U.S. The map indicates that there is high train
flow on rail tracks that traverse through Washington, Montana, North Dakota, Arizona,
New Mexico, Texas, Missouri, Wyoming, Nebraska, lowa, Illinois, Indiana,
Pennsylvania, Ohio, Georgia, New York, and New Jersey. The depicted train flow
pattern and volume in most of the states are very similar to the proposed model’s
projected flow pattern. However, there exist a few discrepancies. The reason may be due
to the difference in the demand between 2005 and 2007 and difference in methodology
adopted to forecast freight flow. Note that Figure 2.4b is derived using annual survey
data, whereas Figure 2.3b is derived from the equilibrium assignment procedure.

The proposed model’s projected ton-miles are also compared quantitatively
against those reported in the Commodity Flow Survey (CFS) and the FAF3. The results
are reported in Table 2.2. In 2007, for the highway mode, the CFS reported freight ton-
miles (Margreta et al., 2009) is about 34% less than the FAF3 reported ton-miles. The
difference in ton-miles between the proposed model and FAF3 and CFS is about 29% and
15%, respectively. Note that the FAF3 demand data was used as an input for the

proposed model. Thus, the difference in ton-miles against FAF3 is reasonable because
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the proposed model only considered the contiguous U.S., and that it may have
underestimated the intermodal demand. For the rail mode, the proposed model’s
projected ton-miles is about 14% less than that of the FAF3 data. This is reasonable for
the same reasons mentioned previously. Overall, for both truck and rail demand, the
proposed model appears to produce reasonable ton-miles value despite having a few

simplifications, including a simplified network.

Note: Long-haul freight trucks typically serve locations at least 50 miles apart, excluding trucks that are used in movements by multiple modes and mail.
Source: US. of Federal Highway Office of Freight Management and Operations, Freight Analysis Framework, version 3.4, 2012

(@

Current Trains per Day === 2550
015 — 50100
—_—1525 —100-200

(b)

Figure 2.4 Freight traffic volume: (a) truck on U.S. highway system and (b) train on
primary rail freight corridor.
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Table 2.2 Freight Ton-Miles (Million) for Year 2007

Mode FAF3 CFS Proposed Model
Truck?® 2,817,837 1,850,335 2,172,701
Rail° 1,991,182 1,755,154 1,703,039

2Includes truck and multiple modes and mail; Includes rail and multiple modes and mail

2.3 CONCLUSION

This chapter proposes a methodology for freight traffic assignment in large-scale
road-rail intermodal networks. The proposed framework considers the lower level of a
bi-level freight logistics problem, where the carriers’ goals are to deliver the goods in a
minimal amount of time. Given a set of freight demands between origins and
destinations and designated modes (road-only, rail-only, and intermodal), the model finds
the user-equilibrium freight flow. To obtain the solution for the model, a path-based
algorithm based on the gradient projection algorithm is adopted. The proposed model
was tested using the U.S. intermodal network and the FAF3 2007 freight shipment data.
It was found that 4 is the most appropriate value for the S parameter when applying the
Borndorfer et al. link performance function on the U.S. intermodal network. The results
of the analysis, volume and spatial variation of freight traffic, show that the model
produces equilibrium flow pattern that was very similar to the FAF3 flow assignment.
The ton-miles values obtained from the model were also very close to those values
reported in FAF3 and CFS. An attractive feature of the proposed model is that it
converges within a few iterations and in about 11 minutes for a very large network. The
model was also solved for the same network using the Frank-Wolfe algorithm, and results
indicate that the gradient projection algorithm is superior to the Frank-Wolfe algorithm in

terms of convergence (i.e., fewer iterations) and computational time. The developed
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model can be used by transportation planners and decision makers to forecast freight

flows and evaluate strategic network expansion options.
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CHAPTER 3

INTERMODAL FREIGHT ASSIGNMENT UNDER UNCERTAINTY"

Efficient management of freight movements is essential to support domestic e-
commerce and international trade. Freight activities are directly related to a country’s
Gross Domestic Product and economic viability. In recent years, the U.S. transportation
system supports a growing volume of freight, and it is anticipated that this trend will
continue in the coming years. For example, in 2015 the U.S. transportation system
moved a daily average of about 49.3 million tons of freight valued at more than $52.5
billion. Freight tonnage is projected to increase at about 1.4% per year between 2015 and
2045 (Bureau of Transportation Statistics, 2017). To support the projected increase in
freight volume, an efficient, reliable, and low-cost freight logistics system is necessary to
keep the U.S. competitive in the global market.

Current freight forecasting methodologies assume that the freight transport
network is always functioning and is never disrupted (e.g., Hwang and Ouyang, 2014;
Uddin and Huynh, 2015). Hwang and Ouyang (2014) provided a framework for freight
train traffic assignment in a network where the network links (i.e., rail tracks) are always
available. Uddin and Huynh (2015) provided a methodology for road-rail freight traffic
assignment in an intermodal network which considered that the network elements are

never disrupted. The aforementioned assumptions were made by the authors to simplify

1This chapter has been adapted from “Uddin, M., Huynh, N., & Ahmed, F. (2019+). Assignment of freight
traffic in a large-scale intermodal network under uncertainty. Journal of Transportation Engineering, Part
A: Systems (under review).”

29



the scope of the studies and were appropriate for the problems addressed in those studies.
Those studies did not consider the risks from weather-induced disruptions which have
dramatically increased in recent years; several have occurred recently that severely
affected the U.S. freight transport network. The Mississippi River flooding impacted a
major freight route, 1-40 in Arkansas in 2011. The tropical storm Irene caused damage to
over 5,000 miles of highways and 34 bridges in Vermont in 2011. Hurricane Sandy
caused billions of dollars in damage and severely flooded streets and tunnels in the New
York and New Jersey region in 2011 (Federal Highway Administration, 2015). In 2017,
the U.S. endured 16 separate weather-related disasters with losses exceeding $1 billion
each, with a total cost of about $306 billion (National Oceanic and Atmospheric
Administration, 2018). In 2018, flooding from Hurricane Florence caused closure of
more than 200 roads in South Carolina and more than 600 roads in North Carolina,
including several stretches of 1-95, which is a major freight route along the Eastern
seaboard (Barton, 2018). Given the growing occurrence of such disasters and their
impact on the freight transport network (Adams et al., 2012), there is a need to develop
freight forecasting methods that address network uncertainties caused by natural
disasters.

To this end, this study proposes a stochastic model for the assignment of freight,
considering road, rail, and intermodal shipments, on a road-rail intermodal network that
is subject to uncertainty. Given the exact evaluation of the stochastic model is difficult,
an algorithmic framework is proposed for solving the model. To account for
uncertainties in a realistic manner (i.e., disasters), the U.S. natural disaster risk map

(Alert Systems Group, 2018) is used. The disaster types considered are earthquake,
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hurricane, tornado, and flood. For each disaster scenario, the model seeks an equilibrium
assignment that minimizes the total transportation cost (i.e., travel time) for a given set of
freight demands between origins and destinations and available modes (road-only, rail-
only, and intermodal). A comparative analysis of different disaster scenarios is

performed to assess their impacts on the resulting freight flows.

3.1 LITERATURE REVIEW

The problem of assigning freight flows to a single-mode or multi-mode network
has been studied by many researchers in the past few decades. Crainic et al. (1984)
developed a non-linear multi-commodity model to address the routing and scheduling of
freight trains. The model was solved using a heuristic and was tested using data from the
Canadian National Railroads. Guelat et al. (1990) developed a model to solve the traffic
assignment problem for a multi-mode network with the objective of minimizing the total
cost. The model was solved using the Gauss-Seidel linear approximation algorithm.
Fernandez et al. (2004) formulated a model which considers the detailed operation of the
freight rail system to predict the equilibrium flows. The model was formulated using the
Variational Inequality (V1) approach and was solved using the diagonalization algorithm.
Winebrake et al. (2008b) developed a geospatial model to be used in intermodal freight
network. The model sought to find the least-cost routes between origins and destinations.
Additionally, it considered the impact of freight assignment in terms of energy and
emission attributes. Chang (2008) formulated a multi-mode multi-commodity flow
model with time windows and concave costs. His model can route freight in an

international intermodal network. Hwang and Ouyang (2014) developed a model to
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predict freight flow in a rail network. Their model’s objective was to find the user-
equilibrium freight train flow by minimizing the total railroad link travel time. Uddin
and Huynh (2015) developed a methodology to assign user-equilibrium freight truck and
train flow considering road, rail, and road-rail intermodal demands. The authors
demonstrated their model using the U.S. intermodal network and freight demands from
the Freight Analysis Framework.

A few researchers have focused on capturing the interaction between freight
shippers and carriers. One of the first shipper-carrier models was formulated by Friesz et
al. (1986). Their model has two separate sub-models (shipper and carrier). The shipper
sub-model selects the origin-destination (OD) pair, modes, transshipment locations, and
carriers. These decisions are then used by the carrier sub-model to assign freight flow
over the rail-water intermodal and rail-only network. Agrawal and Ziliaskopoulos (2006)
also developed a shipper-carrier model where the shippers seek to minimize their cost by
choosing carriers with the lowest shipping cost. The VI formulation was used to model
the shippers’ decision to choose carriers.

The multimodal network design problem has been explored from an investment
perspective in some studies. Loureiro and Ralston (1996) developed a multi-commodity
multi-mode network design model to determine the best set of investment options for the
freight network. The model captured the competition among various modes by assuming
that goods are shipped at minimum total generalized cost. Yamada et al. (2009)
developed an investment freight planning model for a multi-mode network. A bi-level

programming model was developed, where the upper level model determined the
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equilibrium freight flows and the lower level model determined the network
improvement actions.

Another approach used by researchers to determine freight assignment is network
simulation. The simulation-assignment approach allows for the flexibilities to consider
operational issues, such as delays at different nodes in the network, advanced traveler
information system, and advanced traffic information. Mahmassani et al. (2007)
developed a dynamic freight network simulation-assignment model to analyze multi-
product freight flows. The link travel cost and transfer cost were included in the model to
find the least-cost path using a sequence of different modes (i.e., truck, train, ferry)
available in the intermodal network. Zhang et al. (2008) validated the above model by
applying it to a Pan-European rail network.

The aforementioned studies assumed that the transport network is failed proof and
always functioning. Some studies have relaxed this constraint by considering network
uncertainty (i.e., disruption or disaster). Garg and Smith (2008) considered a multi-
commodity network flow problem with link failure. The authors formulated an
optimization model to determine a minimum-cost set of links for construction to address
the disruption and to maintain feasible flow in the network. Peterson and Church (2008)
addressed the routing of shipments when there is a loss of links in the freight rail
transportation network.  The authors developed a routing-based model for both
capacitated and uncapacitated networks. Chen and Miller-Hooks (2012) developed a
model to quantify network resilience for intermodal freight transport. A stochastic model
was formulated to maximize the number of shipments between OD pairs. Huang et al.

(2011) considered real-time disruption management for intermodal transport. Their
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model aimed to predict the duration of the disruption. Miller-Hooks et al. (2012)
formulated a model to determine the optimal level of preparedness and recovery actions
to achieve the maximum level of resilience given a budget constraint. Gedik et al. (2014)
presented a model that outlines a course of actions after disruptions. In their model, rail
links were removed, and freight trains were re-routed in the available residual network.
Uddin and Huynh (2016) proposed a stochastic model for the routing of multi-commaodity
freight in an intermodal network that is subject to disruptions. Uddin and Huynh (2019)
extended their previous model to allow users to specify the reliability level and the model
in turn provides a routing plan for the intermodal freight considering the reduced capacity

of the network elements.

3.2 MODEL FORMULATION
The formulation assumes that a road-rail intermodal freight transportation

network is represented by a directed graph G=(N,.A), where N is the set of nodal

points of the network and A4 is the set of links joining them in the network. Set A

consists of the set of freight zone centroid nodes A/, the set of road intersections A/,
and the set of rail junctions A, that is, N'=N_, UN, UN,. Set A consists of the set of
road segments A, the set of rail tracks .4,, and the set of terminal transfer links A, , that
is, A=A UA UA,. The road-rail intermodal terminals are modeled as network links.

The flows are bi-directional on the terminal links. The end nodes of terminals have
different nodes, that is, one from set A, and the other from set A/;. Origin and
destination sets are represented by R<c N and Sc N, respectively. Table 3.1

summarizes the notations used in the model.
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Table 3.1 Notations

Notation Description

N set of nodes in network

A set of links in network

N, set of freight zone centroid nodes in network

N, set of road intersections in network

N, set of rail junctions in network

A set of road segments in network

A, set of rail tracks in network

A set of terminal transfer links in network

R set of origins in network, R ¢ N

S set of destinations in network, S c N

T set of available intermodal terminals for transfer of shipments
r origin zone index, re R

s destination zone index, seS

K" set of paths with positive truck flow from r to s

K" set of paths with positive train flow from r to s

K set of paths with positive intermodal flow from r to s

o freight truck demand from r to s

q° freight train demand from r to s

q° freight intermodal demand from r to s

E set of disruption-scenario samples

& a disruption-scenario sample, £ € =

fkf; flow on path k connecting r and s under disruption-scenario sample &
o flow on link a e A under disruption-scenario sample &

Cas capacity of link a e .4 under disruption-scenario sample &
t, (a)) travel time on link a € A for flow of @ under disruption-scenario sample &

capacities will be different depending on disruption-scenario sample e=.

variable x,

The capacity of each network link ae A is disruption-scenario dependent, that is,

is defined to represent the assigned freight flow on link
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disruption-scenario sample &e=. Typically, rail tracks are shared by train in both

directions. For that reason, the link delay on any rail track is dependent on the flow on it

as well as the flow in the opposite rail track. In the following model, for train flow, x,,

represents the flow from node i<\, to node je N, and x,. represents the flow from
node je N, tonode ieN,.

For freight truck demand q° from origin reR to destination s S and a set of
paths K{* that connect r to s for each origin-destination (OD) pair, the path flow f7
satisfies the demand under disruption-scenario sample &£<Z=. Similarly, the path flows
for freight train and intermodal on path sets K* and K satisfy their respective demands
(g° and g*) from r to s under disruption-scenario sample &. Since the intermodal

path set consists of paths formed by links from both road segments and rail tracks, the

total freight flow on a road segment (a<.4 ) is the sum of the road-only flows and the
intermodal flows. Similarly, the total freight flow on a rail track (ae.4,) is the sum of

the rail-only flows and intermodal flows. The following stochastic model finds the

equilibrium freight flows in a road-rail intermodal network.

Min E{a; Joxagtag(a))dw+a;| [t () doo 3.1)
Subject to

> fi=0°, VreR,se8exE (3.2)
keK/®

> fE=0°, VreR,seS ek (3.3)
keK/®

> fEi=0°, VreR,seS e (3.4)
keK/®
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Xe=20, > fZ6a+2> > fida, VaecA,feE (3.5)

reR ses kek/® reR ses keK™
X =2 > > f26e+D D > flse,  VaeA,feE (3.6)
reR ses kek;® reR seS keK®
fk’;zo, VkeK?® keK® keK® reR,seS, ek (3.7)
where

< |1 if linkaison path k connecting r and s
0 otherwise

The objective function in equation (3.1) seeks to minimize the total expected
travel time across different disruption scenario samples. Specifically, the total travel time
includes the travel time on both road and rail segments. Constraints (3.2) through (3.4)
ensure that all freight demands are assigned to the network. Constraints (3.5) and (3.6)
compute the link flows on road and rail segments, respectively. Lastly, constraint (3.7)
enforces all flow to be nonnegative.

To estimate the objective function value in equation (3.1), travel time on road and
rail segments as a function of the flow are needed. For the road travel time, the Bureau of
Public Roads link performance function is used. For rail travel time, the link
performance function proposed by Uddin and Huynh (2015) is used. The link

performance functions have the following form:

4
Xa —
taé(xaé)_tm[1+o.15[c—”fj ] VacA, ek (3.8)
ag
4
Xa§+Xa,§ _
e (Xaz + X ) =t | === | VacA,EcE (3.9)
ag
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t,, and t,, are the free-flow travel time for road and rail links, respectively. C,. is the

capacity of the link a under disruption-scenario sample ¢ .

3.3 ALGORITHMIC STRATEGY

The proposed model (3.1) — (3.7) is a stochastic program, which is difficult to
solve because of the need to evaluate the expectation in the objective function. One
approach is to approximate the expected value through sample averaging (Santoso et al.,
2005; Uddin and Huynh, 2016). This approach is known as sample average
approximation (SAA). In this study, the SAA algorithm proposed by Santoso et al.
(2005) is adopted. The objective function of the model (equation 3.1) can be rewritten as

follows, without loss of generality, where y represents the decision variable.

Min E,.[Q(Y.¢)] (3.10)

3.3.1 The SAA Algorithm

Step 1. Generate M independent disruption-scenario samples each of size N, i.e.,

£, EN for m=1,...,M . For each sample, solve the corresponding SAA problem.

N
Min %Zg(y,gﬁ) (3.11)

Let zy and ¥y, m=1..,M , be the corresponding optimal objective value and an optimal

solution, respectively.

Step 2. Compute the following two values.

Ty =— .25 (3.12)
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2

1 ——
UTZN,M = W;(ZN _ZN,M) (3.13)

The expected value of z, is less than or equal to the optimal value z* of the true
problem (Santoso et al., 2005). Thus, z,,, provides a lower statistical bound for the

optimal value z* of the true problem, and a§NM is an estimate of the variance of this

estimator.

Step 3. Choose a feasible solution § from the above-computed solutions ¥y, and
generate another N’ independent disruption-scenario sample, i.e., &',...&". Then

estimate true objective function value Z,.(¥) and variance of this estimator as follows:

ZNV(V):=$ _lQ(V,af“) (3.14)
2 (G l - & oen 5 v i
aNr(y):=ng_;[Q(y,§ )-2.(9)] (3.15)

Typically, N" is much larger than the sample size N used in solving the SAA problems.
Z,+(¥) is an unbiased estimator of z(y). Also, Z,.(¥) is an estimate of the upper bound
on z*.

Step 4. Compute an estimate of the optimality gap of the solution § using the lower

bound estimate and the objective function value estimate from Steps 2 and 3,

respectively, using the equations below:
gapN,M,N'(y) = ZN’(y)_ZN,M (3.16)

o’ :Gf,,(Y)+c77 (3.17)
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3.3.2 Gradient Projection Algorithm

The SAA problem in equation (3.11) is the standard traffic assignment problem,
which cannot be solved analytically. This study adopts the path-based algorithm
(gradient projection) proposed by Uddin and Huynh (2015) to solve the traffic
assignment problem. The gradient projection (GP) algorithm was first used by
Jayakrishnan et al. (1994) to solve the traffic assignment problem. Uddin and Huynh
(2015) further modified the GP algorithm to consider the situation where freight traffic
demands could be transported via one of three modes (road-only, rail-only and
intermodal). Their GP algorithm also considered intermodal terminals in the network.
The adopted GP algorithm has the following iterative steps for a specific disruption-
scenario sample & .
Step 0. Initialization

Set t,. =t,.(0),vae.A, and select terminals from the available terminals 7~ for all OD
pairs. Assign OD demand q°, q°, and g° on the shortest path calculated based on
t..VaeA, t, vaeA,and t,,Vae A, respectively, and initialize the path sets K, K
, and K with the corresponding shortest path for each OD pair (r,s). This initialization
yields path flows and link flows. Set iteration countto p=1.
Step 1. For each OD pair (r,s):

Step 1.1. Update

Set t,. =t,.(x.(p)).vae.A. Update the first derivative lengths, i.e., path travel

times at current flow: dg(p),vkeK?, di(p),vke K, and dg(p),vkeK?.
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Step 1.2. Direction finding

Find the shortest path k(p) based on t,.(p),vae.4. If different from all the

paths in K*, add it to K and record d;s(p). If not, tag the shortest among the

paths in K as k*(p). Repeat this procedure for K* and K to find ) and
di.,, based on t,.,vaeA and t,. VaeA, respectively.

Step 1.3. Move

Set the new path flows for K.

rs rs a p rs rs I, rs
fké(p+1)=max{0, fkf(p)_srs((p))(dkt(p) dn - )} vk e K, k #Kk,
k&

. O (P .
where s;; (p) = Zaxé—((p)) Vk e K|
a al

a denotes the links that are on either k or k., but not on both. «(p) is the step

size; the value of this parameter is set as 1 (Jayakrishnan et al., 1994). Now,

t(p+1) =" =D £ (p+1). vkeKS k=k®(p)

Follow the above procedure to find new path flow for K and K. From path

flows find the link flows x,.(p+1).

Step 2. Convergence test

If the convergence criterion is met, stop. Else set p=p+1 and go to Step 1.

Figure 3.1 shows a flow chart that illustrates how the SAA and GP algorithms are

used to solve the traffic assignment problem. The model solution procedure starts with

the input of OD demands and intermodal network data. Then, a number of disruption-
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scenario samples are generated following the procedure described in Step 1 of the SAA
algorithm. Then, for a specific scenario sample, GP algorithm solves the assignment
problem and outputs the network link flows. This is repeated until all the scenario
samples have been considered. After that, the procedure continues to Step 2 to 4 of the

SAA algorithm.

Start

4

0-D demand and intermodal
network data

A

Generate network disruption scenarios
(Step 1 of SAA algorithm)

A

For scenario sample ¢ use
GP algorithm to get link flows

Have all scenario
samples been considered?

No

Yes

'

Continue to Step 2 of SAA algorithm

A 4

Stop

Figure 3.1 Algorithmic framework.
3.4 NUMERICAL EXPERIMENTS

The proposed algorithmic framework was coded in MATLAB R2018a. The

experiments were run on a desktop computer with an Intel Core i7 3.40-GHz processor
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and 24 GB of RAM. To validate the proposed model and algorithmic framework, the
road-rail transportation network in the contiguous U.S. and five disaster scenarios were

considered.

3.4.1 Network and Disaster Data

The U.S. road-rail intermodal network shown in Figure 3.2 was used (Uddin and
Huynh, 2015). The network was simplified from the U.S. intermodal network created by
Oak Ridge National Laboratory (Center for Transportation Analysis, 2014). The
simplified network consists of only Interstates, Class | railroads, and road-rail terminals.
In Figure 3.2, the squares represent Freight Analysis Zone (FAZ) centroids, the circles
represent road-rail terminals, the black lines represent Interstates, and the grey lines
represent Class | railroads. In all, the network has a total of 1,532 links and 301 nodes.
The nodes include 120 FAZ centroids, 97 major road intersections, and 84 major rail
junctions.

The Freight Analysis Framework (FAF) is the most comprehensive public source
of freight data in the U.S. (Federal Highway Administration, 2013). Currently, FAF
version 4 is available. However, in this chapter FAF version 3 was used given that the
network used for experiments is based on FAF version 3 (Uddin and Huynh, 2015). Note
that the proposed model and algorithmic framework can assign freight flows using the
input from any version of FAF. The FAF version 3 has a total of 120 FAZ; hence, it is
assumed that there are 14,400 possible Origin-Destination (OD) demand pairs in the
network. One issue with the FAF demand is that it provides freight demands in terms of

tonnage. Therefore, it is required to convert tonnage to truck or rail counts to be used as
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input in the model. This study used the converted freight demands from Uddin and
Huynh (2015); readers are referred to the work for the detailed procedure used for
conversion. The freight OD trip tables for the truck, rail, and intermodal trips are in 120
x 120 x 3 matrix form. For a single day in the base year (2007), there are 618,190 truck

shipments, 1,415 rail shipments, and 12,474 intermodal shipments.

Figure 3.2 U.S. road-rail intermodal network.

To create disaster scenarios, the U.S. natural disaster risk map (Alert Systems
Group, 2018) was used. The map is generated using the disaster risk data from the
American Red Cross and the National Oceanic and Atmospheric Administration (Alert
Systems Group, 2018). It shows the vulnerable areas under four natural disasters:
earthquakes (both high and moderate risks), hurricanes, tornadoes, and floods. Based on
this, five disaster scenarios were considered for the numerical experiments. The
scenarios are earthquake (high risk), earthquake (high and moderate risk), hurricane,
tornado, and flood.

In the experiments, the capacities of the links were assumed to have a uniform

distribution, each with a specified range (Miller-Hooks et al., 2012; Uddin and Huynh,
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2016). For each disaster scenario, at first link capacities were randomly drawn from their
corresponding distributions. Then to replicate the impact of the disaster, the capacities of
50% of the links in the risk areas were further reduced; these links are randomly selected.
The reduction in capacity could be as high as 100%, if the objective is to make a link
impassable. Since the network employed for the experiments is simplified, there are
fewer alternate paths between the OD pairs. For this reason, an 80% reduction in
capacity was assumed to avoid a complete gridlock. Other studies have also used a
similar approach for capacity reductions (e.g., Chen and Miller-Hooks, 2012; Miller-
Hooks et al., 2012). The aim of these experiments is to understand at a very high level
how the different natural disasters impact freight logistics, for which limited information
is available in the literature. Once this information is better understood, future work can
focus on examining specific cases such as comparing the cost of a hurricane in the Gulf
Coast (e.g., Hurricane Harvey) versus one in the Southeastern region (e.g., Hurricane

Florence) versus one in the Northeastern region (e.g., Hurricane Sandy).

TORNADO
ALLEY?

DATA FOUNDRY
.

US NATURAL DISASTER MAP'

'SOURCE: REDCROSS.ORG
2SOURCE: NOAA.GOV -7

EARTHQUAKES (MODERATE RISK) B EARTHQUAKES (HIGH RISK) B FLOODS B HURRICANES I TORNADOES

Figure 3.3 U.S. natural disaster risk map (Alert Systems Group, 2018).
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3.4.2 Results and Discussion
To apply the SAA algorithm, the number of independent disruption-scenario
samples (M) was set to 100, the sample size (N ) was set to 1, and the number of large-
size samples (N’) was set to 1,000. For the GP algorithm, the value of the relative gap
(i.e., convergence criterion) was set to 0.0001 (Boyce et al., 2004), which is the relative
change in the value of the objective function from one iteration to the next. Note that the
terms in the objective function were normalized to yield consistent units. Specifically,
the first term was divided by the sum of truck demand and intermodal truck demand and
the second term divided by the sum of rail demand and intermodal rail demand.
With the above values, the SAA method will produce several candidate freight
flow patterns, but no more than 100 (M =100). Among these candidate flow patterns, the
optimal flow pattern is the one that yields the lowest optimality gap (equation 3.16) when

each candidate flow pattern was applied to the 1,000 test scenarios (N’ =1,000).

Table 3.2 Cost Statistics for Solutions under Different Disasters

Total Cost Earthquake Earthquake (High Hurricane Tornado Flood
(Hour/day) (High Risk)  and Moderate Risk)

Average 50.0401 76.2006 47.9100 149.9243 199.1450
Std. dev. 0.0579 0.1524 0.1294 0.0268 0.3699
Minimum 47.7146 70.0737 42.7106 148.8488 184.2753
Maximum 54.4278 87.7608 57.7205 151.9536 227.2015
gap 0.2001 0.4912 0.4162 0.0976 1.1830
O 0.1939 0.5147 0.4355 0.0900 1.2484

Table 3.2 summarizes the cost statistics for the five disaster scenarios. The CPU
run times for the five disaster scenarios (high-risk earthquake, high and moderate risk

earthquake, hurricane, tornado, and flood) were 595.9, 716.2, 669.2, 531.4, and 417.1
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minutes, respectively. As shown, the impact of hurricane is least costly (mean total cost
= 50 hours/day) and flood is most costly (mean total cost = 200 hours/day).

The resulting user-equilibrium flow for road and rail networks for different
disaster scenarios are shown in Figures 3.4 through 3.8. The thickness of the links
signifies the volume of assigned freight traffic. The result in Figure 3.4a indicates that
there is high truck flow on Interstates that traverse Arizona, California, Florida, Georgia,
Idaho, Illinois, Indiana, Michigan, New York, Ohio, and Wyoming under the high-risk
earthquake scenario. The high truck flow on 1-80 in Nevada and Utah is due to freight
being diverted from I-5 in California when there is an earthquake. The result in Figure
3.4b indicates that there is high train flow on rail tracks that traverse Illinois, Indiana,
lowa, Minnesota, Montana, North Dakota, South Dakota, West Virginia, and Wisconsin
under the high-risk earthquake scenario. Compared to the base case scenario (without
any disaster), there is little difference in the train flow because the rail tracks in these

states are not affected by the earthquake in California.

FAF Truck Volume per Day Freight Train per Day
— 05000 — 10,001-15,000 == 20,001-25,000 — 0-15 —— 26-50 —— 101-200
— 5,001-10,000 = 15,001-20,000 — 18-25 — 51-100

(@) (b)

Figure 3.4 Freight traffic assignment under earthquake (high risk): (a) road and (b) rail.
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Figure 3.5 shows the assigned freight flow under the high and moderate risk
earthquake scenario. The result in Figure 3.5a indicates that there is high truck flow on
Interstates that traverse Georgia, Indiana, Kentucky, Pennsylvania, Tennessee, and Texas.
Compared to the high-risk earthquake scenario, there is a more even distribution of truck
flow in the Western states (such as California, Nevada, Arizona, and Utah). The result in
Figure 3.5b indicates that there is high train flow on rail tracks that traverse Illinois, lowa,
Minnesota, Montana, North Dakota, South Dakota, West Virginia, and Wisconsin. This

assigned rail flow is very similar to that of the high-risk earthquake scenario.

FAF Truck Volume per Day Freight Train per Day
0-5,000 —— 10,001-15,000) === 20,001-25,000 — 015 26-50 — 101-200
— 5,001-10,000 —— 15,001-20,000 — 16-25 —— 51-100 = 201-300
(@) (b)
Figure 3.5 Freight traffic assignment under earthquake (high and moderate risk): (a) road
and (b) rail.

Figure 3.6 shows the assigned freight traffic flow under the hurricane scenario.
The result in Figure 3.6a indicates high truck flow on Interstates that traverse California,
Illinois, Indiana, Missouri, Ohio, Tennessee, Texas, and Pennsylvania. Compared to the
base case, trucks are diverted from the East and Gulf Coast to the North when there is a
hurricane in these regions. The result in Figure 3.6b indicates high train flow on rail

tracks that traverse lowa, Minnesota, Nebraska, North Dakota, South Dakota, and
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Wyoming. As is the case with truck flow, there is a higher concentration of rail flow in

the Midwest regions.

FAF Truck Volume per Day Freight Train per Day
— 0-5,000 = 10,001-15,000 === 20,001-25,000 0-15

26-50 — 101-200
— 5,001-10,000 = 15,001-20,000 — 1625 — 51-100

(@) (b)

Figure 3.6 Freight traffic assignment under hurricane: (a) road and (b) rail.

Figure 3.7 shows the assigned freight traffic flow under the tornado scenario. The
result in Figure 3.7a indicates that there is high truck flow on Interstates that traverse
Illinois, Louisiana, Minnesota, Montana, North Dakota, Texas, and Wisconsin.
Compared to the other three disaster scenarios (high-risk earthquake, high and moderate
risk earthquake, and hurricane), the truck flow is very high on some Interstates (more
than 20,000 FAF trucks per day); particularly, 1-10 in Louisiana and Texas, and 1-94 in
Wisconsin, Minnesota, and North Dakota. This is due to the fact that trucks are avoiding
the Interstates that traverse the tornado alley. The result in Figure 3.7b indicates that
there is high train flow on rail tracks that traverse Arizona, Colorado, lowa, Montana,
New Mexico, North Dakota, Wisconsin, and Wyoming. As is the case with trucks, the

trains are avoiding the rail tracks that traverse the tornado alley.
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FAF Truek Volume per Day Freight Train per Day
05,000 — 10.001-15,000 === 20,001-25,000 0-15
— 5,001-10,000 == 15,001-20,000 === 25,001-30,000 — 16-26 —— 51100

(a) (b)

Figure 3.7 Freight traffic assignment under tornado: (a) road and (b) rail.

26-50 = 101-200

Lastly, Figure 3.8 shows the assigned freight traffic flow under the flooding
scenario. The result in Figure 3.8a indicates that there is high truck flow on Interstates
that traverse Alabama, Arkansas, Indiana, New Mexico, New York, Oklahoma,
Pennsylvania, Tennessee, and Texas. Similar to the tornado scenario, some of the
Interstates have very high truck flow; particularly, 1-40 in Arkansas and Oklahoma, and I-
90 in New York. The reason that trucks are diverting from the Interstates that traverse
the Midwestern states is because there is a higher percentage on links in these states that
are affected by the flood. The result in Figure 3.8b indicates that some of the rail tracks
have very high train flow (i.e., more than 200 trains per day); particularly, rail tracks in
Montana and Wyoming. Furthermore, most of the Mountain states have high rail flow
through their states under the flooding scenario. This is also because the trains are
avoiding the use of rail tracks in the Midwest regions.

The proposed model’s projected ton-miles under different disaster scenarios are
compared quantitatively against those reported in FAF3 and Uddin and Huynh (2015).

As evident from Table 3.3, for both highway and railway modes, the freight ton-miles are
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higher than that of Uddin and Huynh (2015) because the authors did not consider any
network uncertainty. The highway freight ton-miles is 8% higher for high-risk
earthquake, 8% higher for high and moderate risk earthquake, 3% higher for hurricane,
8% higher for tornado, and 16% higher for flood compared to that of the deterministic
case. The rail freight ton-miles is 2% higher for high-risk earthquake, 4% higher for high
and moderate risk earthquake, 1% higher for hurricane, 10% higher for tornado, and 20%
higher for flood compared to that of the deterministic case. Overall, when disasters are
considered, freight ton-miles are always higher, which is expected because of the need to
make detours. The impact of flooding is the highest because there are more states in the

flood-risk areas, and they are scattered throughout the U.S.

FAF Truck Vielume per Day Freight Train per Day
0-5,000 — 10,001-15,000 s 20,001-25,000 015 —— 26-50 = 101-200
— 5,001-10,000 === 15,001-20,000 === 25 001-30,000 — 16-25 = 51-100 = 201-300

(a) (b)
Figure 3.8 Freight traffic assignment under flood: (a) road and (b) rail.

Table 3.3 Million of Freight Ton-Miles for 2007 under Different Disasters

Mode of FAF3 Uddinand  Earthquake Earthquake Hurricane Tornado Flood
Transport Huynh (High Risk) (High and
(2015) Moderate
Risk)
Truck’ 2,817,837 2,172,701 2,343,715 2,342,831 2,245,430 2,338,086 2,513,778
Rail* 1,991,182 1,703,039 1,743,840 1,774,065 1,724,057 1,878,646 2,044,679

FAF3 = Freight Analysis Framework, Version 3. fIncludes truck, and multiple modes and mail. *!Includes rail, and
multiple modes and mail.
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3.5 CONCLUSION

This paper developed a stochastic model to assign freight traffic in a large-scale
road-rail intermodal network that is subject to network uncertainty (i.e., natural disaster
or disruption). For a specific disaster scenario and given a set of freight demands
between origins and destinations and designated modes (road-only, rail-only, and
intermodal), the model finds the user-equilibrium freight flow. This paper also provided
an algorithmic framework, based on the Sample Average Approximation and Gradient
Projection algorithm, to solve the model. Five disaster scenarios were considered in the
numerical experiments: high-risk earthquake, high and moderate risk earthquake,
hurricane, tornado, and flood. The proposed model and algorithmic framework were
tested using the U.S. road-rail intermodal network and the Freight Analysis Framework
shipment data. The results indicated that when disasters are considered the freight ton-
miles are higher than when no disaster is considered, which is expected. The resulting
user-equilibrium flows clearly indicate the impact of disasters; that is, truck and rail flow
are shifted away from the impacted areas. These results highlight the need to address
highways and rail tracks in areas that are normally underutilized but heavily used by
trucks and trains when there is a disaster. In terms of cost and freight ton-miles, the

impact of flooding is the highest.
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CHAPTER 4

INTERMODAL FREIGHT ROUTING UNDER DISRUPTIONS!

The freight transport network is an essential component of the economy as it
supports supply chains by connecting spatially-separated origins and destinations of
supply and demand. As such, it needs to be robust and resilient to support and enhance
economic development. Due to the increase in international trade, freight flows have
increased significantly, and this trend is expected to continue in the future (Tavasszy and
De Jong, 2013). For example, a daily average of 54 million tons of freight moved
through the U.S. transportation system in 2012. The projected freight flows will stress
both public and private infrastructures as more elements of the network reach or exceed
capacity, which in turn will affect network performances (Strocko et al., 2013).

The freight transport network is vulnerable to various disruptions. A disruptive
event can be a natural disaster (e.g., earthquake, flooding, tornado, and hurricane) or a
man-made disaster (e.g., accident, labor strike, and terrorism). A number of such
disasters have occurred recently that severely impacted the freight transport network.
The earthquake that occurred in 1994 on the Hayward Fault in San Francisco, CA caused
more than 1,600 road closures and damaged most of the toll bridges and major highways
(Okasaki, 2003). The collapse of the 1-35W bridge in Minneapolis affected about

140,000 daily vehicle trips and the daily re-routing cost was $400,000 for the impacted

1This chapter has been adapted from “Uddin, M., & Huynh, N. (2016). Routing model for multicommodity
freight in an intermodal network under disruptions. Transportation Research Record, 2548, 71-80.”
Reprinted here following SAGE’s Green Open Access policy.
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users (Zhu and Levinson, 2012). Hurricane Sandy made landfall over the New York and
New Jersey region in 2012 caused billions of dollars in damage and severely flooded
streets and tunnels along the East Coast of the U.S. Due to the labor strike at the Port of
Long Beach in 2012, the movement of $650 million worth of goods was halted each day
(Federal Highway Administration, 2015). These events highlight that damage to the
transportation network not only disrupt transportation services but also result in economic
losses and sociological effects. Disruptions in freight movements have a number of
ramifications: (1) receivers will not receive their goods on time, (2) carriers need to find
alternative routes to transport the goods that are impeded by the disruption, and (3)
shippers need to adjust their supply chains to account for the disruption. For these
reasons, adequate redundancy in the freight transport network is needed to prevent
significant service losses in the event of a disruption.

This study proposes a stochastic model for the routing of multicommodity freight
on a road-rail intermodal network that is subject to various disruptions. The model can
be used by carriers to determine the optimal road segments (highway links), rail segments
(rail lines), and intermodal terminals to use under different types of disruptions. Since
the exact evaluation of the stochastic model is difficult or impossible (Chang et al.,
2007), the developed model is solved using the Sample Average Approximation

algorithm proposed by Santoso et al. (2005).

4.1 LITERATURE REVIEW

The multimodal freight transportation planning problem has been studied by

many researchers over the past few decades, and its study was accelerated during the last
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decade (SteadieSeifi et al., 2014). One of the earlier studies was done by Crainic and
Rousseau (1986), which presented a general modeling and algorithmic framework for the
multicommodity, multimode freight service network to be used at the strategic and
tactical planning level. The objective of their model is to minimize costs and delays, if a
single authority controls the supply of transportation services and routing of goods
through the service network. Their model considered capacitated network elements (i.e.,
roadways, rail lines, and terminals have finite capacities) and a penalty cost for excess
assignment over capacity.

The majority of the studies that deal with intermodal freight shipments seek to
minimize routing cost. Barnhart and Ratliff (1993) proposed a model for minimizing
routing cost in a road-rail intermodal network. Their model was to help shippers in
deciding routing options. It used shortest path and matching algorithmic procedures to
achieve the objective. Boardman et al. (1997) developed a software-based decision
support system (DSS) to assist shippers in making the best selection given a combination
of modes. The crux of this DSS is the calculation of least-cost paths using a k-shortest
path method, while requiring the transportation costs of all modes and transfer costs
between modes as input. A similar approach was used by Song and Chen (2007) in their
development of mode selection software. However, the modes considered by Song and
Chen had pre-scheduled departure times. The authors concluded that the minimum cost
delivery problem is equivalent to the shortest path problem if the release time at the
origin and the due date at the destination are provided.

A number of studies have addressed the intermodal routing problem with time

windows. Ziliaskopoulos and Wardell (2000) proposed an algorithm for finding the
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optimal time-dependent intermodal path in a multimodal transportation network. Their
algorithm considered mode and arc switching delays. Xiong and Wang (2014) developed
a bi-level multi-objective model and genetic algorithmic framework for the routing
problem with time windows in a multimodal network. Ayar and Yaman (2012)
investigated an intermodal multicommodity routing problem where release times and due
dates of commodities were pre-scheduled in a planning horizon.

All of the aforementioned studies assume that the freight transport network is
always functioning and is never disrupted, which is not realistic. To account for natural
or man-made disruptions, some researchers have studied the reliability, vulnerability, and
resiliency of transportation networks. Snyder and Daskin (2005) presented a reliable
uncapacitated location problem considering failure of facilities in the network. Their
model finds reliable facility location by taking into account the expected transportation
cost after failure, in addition to the minimum operational cost. Cui et al. (2010) extended
this work to consider failures with site-dependent probabilities and re-routing of
customers when there are failures. Peng et al. (2011) also considered disruptions of
facility in reliable logistics network design. Their mixed integer program not only
minimizes the nominal cost but also reduces disruption risks by employing the p-
robustness criterion.

A resilient freight transport network is one that can recover from any disruption
by preventing, absorbing, or mitigating its effects (SteadieSeifi et al., 2014). A decision
model to address disruptive events in an intermodal freight transport network was
proposed by Huang et al. (2011). Their model re-routes flows if the forecasted delay on a

distressed link exceeds a pre-specified threshold. In a study performed by Chen and
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Miller-Hooks (2012), a method to quantify resilience of an intermodal freight transport
network was developed. They formulated a stochastic mixed integer program that aims
to minimize unsatisfied demands during disruptions. Their model was solved using
several exact algorithms; however, the application was limited to only small-scale
networks due to high computational time requirements. Miller-Hooks et al. (2012)
extended this work to maximize freight transport network resiliency by implementing
preparedness and recovery activities within a given budget. A stochastic program was
developed which maximizes freight flows in the network under disruptions. Similar to
their previous study, the model was applied to the same small-scale networks.

A few studies have considered network vulnerability in the planning decision.
Peterson and Church (2008) investigated rail network vulnerability by formulating both
uncapacitated and capacitated routing-based model and applied their model to a statewide
network. Garg and Smith (2008) presented a methodology for designing a survivable
multicommodity flow network. Their model analyzes failure scenarios involving
multiple arcs. Most recently, Gedik et al. (2014) assessed network vulnerability and re-
routing of coal by rail when disruptions occur in the network.

This study fills a gap in the literature by addressing the multicommodity routing
problem in an intermodal road-rail network that is subject to disruptions. This study is
most closely related to the works performed by Chen and Miller-Hooks (2012) and
Miller-Hooks et al. (2012) in that they focus on solving the road-rail intermodal freight
routing problem with explicit consideration of network disruptions. However, there are
several notable differences between our work and theirs: (1) our study considers the

multicommodity aspect (different commodities may have different delivery requirements
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and some commaodities might need to be separated to facilitate early or delayed delivery);
(2) our study proposes a new model that uses a link-based formulation; and (3) our model

is applied to an actual large-scale intermodal freight network.

4.2 MODEL FORMULATION
The formulation assumes that a road-rail intermodal freight transportation

network is represented by a directed graph G =(N, A), where N is the set of nodes and
A is the set of links. Set N consists of the set of major highway intersections H , the set
of major rail junctions R, and the set of intermodal terminals S, i.e., N=HURUS. Set
A consists of the set of highway links A, and the set of railway links A, i.e.,
A=A, UA,. Shipments can change mode at the intermodal terminal nodes S. Each
highway link (i, j)e A, and railway link (i, j)e A, have unit transportation costs
associated with them for each commodity k € K shipment. Each intermodal terminal
seS has also a unit transfer cost for each commodity k e K shipment. Another
important cost parameter is the penalty cost of unsatisfied demand ¥. The capacity of
each highway link, railway link, and intermodal terminal are disruption-scenario
dependent, i.e., capacities will be different at different disruption scenarios. Similarly,
the travel time on highway and railway links and the transfer time at terminals are

disruption-scenario dependent.

4.2.1 Sets/Indices
H set of major highway intersections

R set of major rail junctions
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S set of candidate intermodal terminals
A,  setof highway links

A set of railway links

C set of OD pairs

K set of commodities

P®  setof paths p connecting OD pair ¢

Q set of disruption scenarios
k commodity type, k e K

i,j,s node, i, j,seN

c an OD pair, ceC

@ a disruption scenario, weQ

4.2.2 Parameters

df  original demand of commodity k e K between OD pair ceC

¥ unit penalty cost for unsatisfied demand

B unit cost of transporting commodity k € K by truck in link (i, j) € A,
ﬁijk unit cost of transporting commodity k € K by rail in link (i, j) € A
Bs  unit cost of transferring commodity k € K in intermodal terminal se S

Qijj () capacity of highway link (i, j) € A, under disruption @
Qjj (@) capacity of railway link (i, j) e A under disruption @

Qs(w) capacity of intermodal terminal s e S under disruption @
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tij (@) travel time on highway link (i, j) € A, under disruption ®
tjj () travel time on railway link (i, j) € A, under disruption
ts(w) processing time in intermodal terminal s S under disruption @

Tc  delivery time for commodity k < K between OD pair ¢ €C

(1]

sufficiently large number

g sufficiently small number

4.2.3 Continuous Variables
Xﬁk(a)) fraction of commodity k e K transported in highway link (i, j) e A,

between OD pair ¢ € C under disruption @

iﬁk(a)) fraction of commodity ke K transported in railway link (i, j)e A,

between OD pair ¢ € C under disruption @

U§ (w) unsatisfied demand of commodity k € K between OD pair ceC under
disruption
F (@) fraction of commodity ke K between OD pair ceC transferred at

terminal seS under disruption @

4.2.4 Indicator Variables
Y (@) binary variable indicating whether or not intermodal terminal seS is

selected for commodity k € K between OD pair ¢ € C under disruption @
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(= 1 if intermodal terminal s is selected for commodity k between OD

pair ¢, = 0 otherwise)
5”%( () binary variable indicating whether or not there is any flow in highway link
@i, j) € A, for commodity k € K between OD pair ¢C under disruption

@ (=1 if highway link (i, j) carries flow of commodity k between OD

pair ¢, = 0 otherwise)
5~ij°k () binary variable indicating whether or not there is any flow in railway link
@i, j) € A, for commodity k € K between OD pair ¢C under disruption

o (= 1 if railway link (i, j) carries flow of commodity k between OD

pair ¢, = 0 otherwise)

4.2.5 Model Formulation

The stochastic multicommodity intermodal freight shipment routing (SMIFR)

problem is formulated as follows.

Min E,, ZZ dkc( z PuXiw (@) + Z ﬁijkii?k(a))+z,ﬁsk|:sﬁ(a))]

(i, j)eA, (i,))eA 55 4.2)
keK ceC
+YU, (o)
Subject to

< +1 ifi=ori®
D Xink(@) = D XGik(@) 4 = -1 ifi=des®, VieH keK,ceC,weQ (4.2)

(i,m)eA, (m,i)eA, = 0 otherwise
D Xk (@)= D Xpik(@)=0, VkeK,ceC,weQ (4.3)

ieori’ jedes®
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X (@) < S (@), Y(i,m) e Ay, keK,ceC,meQ
X ik (@) + Sk (@) <1, Y(m,i) e Ay keK,ceC,0eQ

D Xik(@) D XGik(@)=0, Vieori® keK,ceC,woeQ
(i,m)eA, (mi)eA,

Z)Z,Cr]k(w)— Z)Zﬁik(w):o, VieRkeK,ceC,weQ
(i.n)eA (ni)eA

Z Xscmk(a))_ Z Xr%sk(a))+ Z X~scnk(a))_ Z X~r(1:sk(a)):01

(s m)eA, (m.S)eA, (sMeA, (M)A
VseS,keK,ceC,mweQ

[ Z)Zgnk(w)— Z)Zﬁsk(w)}(l—Ysi(w))—O, VseS,keK,ceC,meQ
(s.n)eA (n,s)eA

Fi(@) =] D Xemk(@)— D Xfsk(@), VseS,keK,ceC,weQ

(s;m)eA, (m.s)eA,

eYsi (@) < F (@) <Yi (@), seS,keK,ceC,mweQ
> S(at@+ D> Si(@f(@+ Y Yi(o)t (o) <TY,
(i, ))e(Avnp) (i, )e(A-np) se(Snp)
VpeP keK,ceC,meQ
£ S (@) < Xy (@) < Gjj (@), V(i j) e Ay keK,ceC,oeQ

&S (0) < X (@) < 5 (@), (i, j) e Ar keK,ceCweQ

D de Xk () <Qjj (@), V(i j) e Ay,weQ

keK ceC

Z Zdlg)zﬁk (w) Séij (), V(i,j))e Ay, 0eQ

keK ceC

D D diF (@) <Qs(w), VseS,weQ
keK ceC
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dﬁf[l— Zxﬁk (a))J:UE(a)), VkeK,ceC,j=des®,weQ (4.18)

ieH
0< Xﬁk(a))sl, v(, j)e Ay, keK,ceC,weQ (4.19)
0< X (@) <1, V(i,j) e A keK,ceC,weQ (4.20)
0<Fj(®)<l VseS,keK,ceC,weQ (4.21)
Uf(:(a))eZJr, VkeK,ceC,mweQ (4.22)
Yok (@) €{0,}, VseS,keK,ceC,mweQ (4.23)
Sijk (0) €{0,3, (i, j)e Ay keK,ceC,weQ (4.24)
ik (@) {013, V(i, j)e A keK,ceCweQ (4.25)

The objective function (4.1) seeks to minimize the total expected system cost
across disruption scenarios.  Specifically, the expected system cost includes the
transportation cost on highway and railway links, the transfer cost at intermodal
terminals, and the penalty cost for unsatisfied demands. Constraints (4.2) to (4.6) ensure
flow conservation at highway nodes (H ). The notations ori® and des® denote the origin
and destination node, respectively, of an OD pair ceC. Similarly, constraint (4.7)
ensures flow conservation at railway nodes (R). Constraints (4.8) and (4.9) ensure flow
conservation at intermodal terminals ('S ); constraint (4.8) maintains the conservation if a
terminal is selected whereas constraint (4.9) maintains conservation if the terminal is not
selected. The decision variables F (@), VseS,keK,ceC,weQ are calculated in

constraint (4.10). Constraint (4.11) establishes the relationship between decision

variables F§(w) and Y (w). Constraint (4.12) ensures that each commodity shipment is
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delivered before the delivery deadline T¢,VkeK,ceC. The relationship between

decision variables Xﬁk (w) and (Sijgk(w) are expressed in constraint (4.13), and the

relationship between decision variables i;}k (®) and Eifk (w) are expressed in constraint

(4.14). Constraints (4.15) to (4.17) ensure that flows are less than or equal to the capacity

of highway links, railway links, and intermodal terminals, respectively. Constraint (4.18)

determines the unsatisfied demand U§(w), Yk eK,ceC,weQ. Lastly, constraints (4.19)

to (4.21) are the definitional constraints, constraint (4.22) is the integrality constraint, and

constraints (4.23) to (4.25) are the binary constraints.

4.2.6 Linear Formulation
The proposed model is not linear, since it has several non-linear constraints: (4.6),
(4.9), and (4.10). Non-linear models are generally very difficult to solve; thus, the non-

linear constraints are reformulated to make the model tractable. The equivalent linear

forms are:
D Xik(@) 22 D XGi(w), Vieori®keK,ceC,oeQ (4.26)
(i.m)eA, (m.i)eA,

—EY§ (@) D XGk(@) - D XSk (@) <EY& (@), VseS keK,ceC,weQ (4.27)
(s:meA (n.s)eA

- Sck(a)) < ngmk(a)) - Zx%sk(a)) SFSCk(a)), VseS,keK,ceC,weQ (4.28)
(s,m)eA, (m,s)eA,

Constraint (4.26) is equivalent to constraint (4.6), which prevents sub-tours.

Constraints (4.9) and (4.10) can be reformulated as constraints (4.27) and (4.28),
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respectively. By replacing constraints (4.6), (4.9) and (4.10) with constraints (4.26),

(4.27), and (4.28), the revised model is a stochastic mixed integer linear program.

4.3 ALGORITHMIC STRATEGY

A key difficulty in solving a stochastic program is in evaluating the expectation of
the objective function. One approach for accomplishing this is to approximate the
expected objective function value through sample averaging. This study adopts the
Sample Average Approximation (SAA) algorithm proposed by Santoso et al. (2005).
Without loss of generality, the objective function of the model can be rewritten as

follows, where A represents the decision variables.

Min E,[®(4,0)] (4.29)

4.3.1 The SAA Algorithm

Step 1. Generate M independent disruption-scenario samples each of size N, i.e., (

j,...o) ) for j=1,.,M . For each sample, solve the corresponding SAA problem.

Min %i@(/i,a)?) (4.30)

optimal solution of the model, respectively.

Step 2. Compute fy and a% using the following equations.

_ 1 :
fy :=MZ f (4.31)
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M

fN = (M " ,Z (4.32)

Here fy provides a lower statistical bound for the optimal value f* of the true problem,

and o% is an estimate of the variance of the estimator.

Step 3. Choose a feasible solution i from the above computed solutions p , and

generate another N' independent disruption-scenario samples, i.e., @',...o"N . Then

estimate the true objective function value fy:(4) and variance of this estimator as

following:

~ ~ N' ~

fN-(ﬂ):=%2®(ﬂ,a)”) (4.33)
n=1

D= 1);[@)(1,@")— fu()] (4.34)

In solving SAA problems, typically, N' is much larger than the sample size N .

Step 4. Compute the optimality gap of the solution and variance of the gap estimator.
gap(A) = fr (A1) - fiy (4.35)

O'Sap =0ﬁv(;{)+o€N (4.36)

4.4 NUMERICAL EXPERIMENTS

To assess the applicability of the proposed model and solution algorithm, two sets
of experiments are conducted. The first set involves a hypothetical small-sized network
with 15 nodes and 5 OD pairs. The second set involves an actual large-scale freight

transport network, consisting of major highways, Class | railroads, and TOFC/COFC
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(Trailer on Flat Car/Container on Flat Car) intermodal terminals in the Gulf Coast,

Southeastern and Mid-Atlantic regions of the U.S.

4.4.1 Network and Data Description

Figure 4.1 shows the hypothetical 15-node road-rail freight transport network.
Nodes 5, 7, 9, and 12 represent intermodal terminals, and node 8 represents a railway
junction where trains can change track/route. The rest of the nodes represent highway
intersections. The solid lines represent highway links, and the dashed lines represent

railway links. The capacity of the links Q;; are assumed to have a uniform distribution
(Miller-Hooks et al., 2012), each with a specified range [I;;,u;;] where [;; is the lower
bound and uj; is the upper bound. The capacities of the intermodal terminals are also

assumed to have a uniform distribution with a specified range. The demand in terms of
number of shipments and delivery deadlines for each commodity between different OD

pairs is provided in Table 4.1.
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Figure 4.1 A hypothetical 15-node road-rail freight transport network.
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Figure 4.2 shows the actual road-rail freight transport network used in the second
set of experiments. As shown, it covers all of the states in the Gulf Coast, Southeastern
and Mid-Atlantic regions of the U.S.: Texas, Oklahoma, Louisiana, Alabama,
Mississippi, Arkansas, Georgia, Florida, South Carolina, North Carolina, Tennessee,
Kentucky, Virginia, Maryland, West Virginia, and Delaware. In all, the network has a
total of 682 links (U.S. interstates and major highways and Class | railroads) and 187
nodes, including 44 intermodal terminals. The Freight Analysis Zone (FAZ) centroids
from the Freight Analysis Framework, version 3, (FAF3) database (Federal Highway
Administration, 2013) are treated as actual origins and destinations of commodity
shipments. There is a total of 48 centroids in the study region. OD pairs are constructed
from these 48 FAZ centroids, and demands are obtained from the FAF3 database. The
demand data are filtered to include only those commodities typically transported via
intermodal (Cambridge Systematics, 2007), and demands are converted into the number
of TOFC/COFC containers using an average load of 40,000 Ibs per container. It is

assumed that all commodities need to be delivered within 7 days.

B Intermodal Terminals

i i @ FAZ Centroids
v e
v Highways

Railways

Figure 4.2 Large-scale U.S. road-rail intermodal network.
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Table 4.1 Number of Shipments and Delivery Deadlines

OD Pair Commodity Index Number of Shipments Delivery Deadline (hours)
1—15 1 40 84
2 35 72
3 22 60
4 20 72
1—11 1 30 72
2 35 72
3 40 48
2—13 1 42 60
2 30 48
3 50 60
4 55 48
15—4 1 35 72
2 45 60
3 50 72
4 30 60
14—3 1 45 48
2 30 60

The transport cost on highways and railways are estimated to be $1.67 per mile
per shipment (Torrey and Murray, 2014) and $0.60 per mile per shipment (Cambridge
Systematics, 1995), respectively. The transfer cost at intermodal terminals is estimated to
be $70 per shipment (Winebrake et al., 2008a). The travel times on highway and railway
links are calculated using free-flow speeds. The number of potential paths between an
origin and destination could be large. For that reason, after getting all the available paths
between a specific OD pair, only those paths that have lengths less than or equal to five
times of the corresponding minimum path length are considered in the path set. This
approach is deemed reasonable because the discarded paths would not have satisfied the

delivery deadline constraint.
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4.4.2 Disruption Types

Three types of disruptive-events are considered: (1) link disruption, (2) node
disruption, and (3) intermodal terminal disruption. Link disruptions are modeled by
randomly selecting several connected links and reducing their capacities by 50%. The
travel times on the affected links are increased as a result of reduced capacities. Node
disruptions are modeled by reducing the capacities of all links connected to the nodes by
80%. And, terminal disruptions are modeled by randomly selecting a number of
terminals and reducing their capacities by 80%; thus, the transfer times at the impacted
terminals will increase. It should be noted that affected links, nodes, or terminals are
selected based on their vulnerability, and the severity of the disruption can be captured by
the amount of capacity that is reduced. Recurring disruptions are not considered in the
numerical experiments. For example, daily variation in travel times and network element
capacities (Torkjazi et al., 2018). However, these types of disruptions that occur
continually over time and involving different links can easily be modeled given the

generality of the model formulation and solution algorithm.

4.4.3 Experimental Results
The proposed solution methodology was implemented in Python, and the IBM
ILOG CPLEX 12.6 solver was used to solve the mixed integer program. Experiments are
run on a personal computer with Intel Core i7 3.20 GHz processor and 8.0 GB of RAM.
To apply the SAA algorithm, the number of independent disruption-scenario
samples (M) is set to 100, the sample size (N ) is set to 1, and the number of large-size

samples (N') is set to 1,000 for all three types of disruption. With these values, the SAA
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method will produce a number of candidate routes per commodity per OD pair but no
more than 100 (M =100). Among these candidate routes, the optimal route is the one that
yields the lowest optimality gap when each candidate route is applied to the 1,000 test

scenarios ( N'=1,000).

Table 4.2 Experimental Results for Hypothetical Network

Link Disruption Node Disruption Terminal Disruption
M 100 100 100
N 1,000 1,000 1,000
CPU Time (min) 17.5 178.4 0.9
Objective Function Value (avg) $92,439.62 $93,152.09 $59,419.30
gap $540.87 $390.09 $4.76
$17.69 $3.80 $0.37

Ogap

Table 4.2 summarizes the input parameters and associated SAA results for the

hypothetical network. The term “gap ” denotes the optimality gap as defined in equation
4.35, and oy, denotes the standard deviation of the gap estimates as defined in equation

4.36. In the case of link disruption, the average objective function value is $92,439.62,
with an optimality gap of $540.87 and estimator standard deviation of $17.69. The
associated computation time is 17.5 minutes. Similar information is presented for the
node and terminal disruption cases. Among the three types of disruption, the node
disruption case results in the highest objective function value, which indicates that it has
the most negative impact on freight logistics. Conversely, the terminal disruption case
has the least impact. This result is counterintuitive because one would expect the
terminal disruption to have the highest impact since it serves as a hub in the freight
transport network. This is due to the network structure which allows commaodities to be

shipped via road more efficiently and less costly. In other words, terminals handle only a

71



small percentage of the shipments, and thus, their disruptions have minimal impact on the

freight logistics.

Table 4.3 Optimal Routes for Hypothetical Network

oD Commodity Optimal Routes
Pair Index Link Disruption Node Disruption Terminal Disruption
=15 1 1358121315 (100%)  1-4-10-11-15 (100%)  1-3-5-8-12—13-15 (100%)
2 1-32.6-14-15(100%)  1-4-10-11-15(100%)  1-4-10-11-15 (100%)
3 1-3-2-6-14-13-15 (100%) 1-4-10-11-15 (100%) 1-4-10-11-15 (100%)
4 1-32.6-14-15(100%)  1-4-10-11-15 (100%) 1-4-10-11-15 (100%)
1—11 1 1-3-5-9-10-11 (100%) 1-4-10-11 (100%) 1-4-10-11 (100%)
2 1-3-5-9-10-11 (100%) 1-4-10-11 (100%) 1-4-10-11 (100%)
3 1-2-6-14-13-11 (5%) 1-4-10-11 (100%) 1-4-10-11 (100%)
1-4-10-11 (95%)
2513 1 2-6-7-12-13 (98%) 2-1-4-10-11-13 (33%) 2_6-14-13 (100%)
2-6-14-13 (2%) 2_6-14-13 (67%)
2 235812 13(100%)  2-3-5-8-12-13 (73%) 2-6-14-13 (100%)
3 2.6-7-12-13 (100%)  2-3-5-8-12-13 (100%)  2-6-7-12-13 (100%)
235812 13(84%)  2-1-4-10-11-13 (65%) 2-6-14-13 (100%)
2-6-14-13 (16%)
154 1 15-13-12-8-5-3-4 (100%)  15-11-10-4 (100%) 15-11-10-4 (100%)
2 15-11-10-4 (100%) 15-11-10-4 (100%) 15-11-10-4 (100%)
3 15-13-12-8-5-3-4 (100%)  15-11-10-4 (100%) 15-11-10-4 (100%)
4 15-13-12-8-5-3-4 (100%)  15-11-10-4 (100%) 15-11-10-4 (100%)
1453 1 14-6-7-5-3 (100%) 14-6-7-5-3 (100%) 14-6-2-3 (100%)
2 14-6-2-3 (100%) 14-6-7-5-3 (100%) 14-6-2-3 (100%)

The corresponding optimal routes are presented in Table 4.3. Optimal routes are
shown as a series of nodes in the direction of origin to destination. For example, the
optimal route to ship commodity #1 between OD pair (1—15) in the event of link
disruptions is: 1-3-5-8-12-13-15. Note that if a particular route does not have
sufficient capacity to handle a particular shipment, then the remaining shipment is

shipped via a second-best route. This is the case with commodity #3 between OD pair
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(1—>11). There are two optimal routes: 1-2-6-14-13-11 (5% use this route) and 1-4—
10-11 (95% use this route). It should be noted that the model places no restriction on the
number of potential routes between each OD. Thus, a shipment could have several routes
if there is insufficient capacity on the least-cost routes.

It is observed that since the network has very few rail links, most of the shipments
are shipped via highway links. This finding corresponds to actual freight flows where the
majority of freights are shipped via road. Furthermore, when highway links are
disrupted, then railway links and terminals are more likely to be used. Again, this is a
logical and expected result. An interesting result that highlights the usefulness of the
model can be seen in the case of a node disruption for commodity #4 between OD pair
(2—13). There is one optimal route, but it only contains 65% of the shipment which
means that the remaining 35% failed to reach its destination (i.e., unsatisfied demand).
There are no unsatisfied demands under link and terminal disruption cases.

To understand the impact of disruptions on an actual road-rail intermodal
network, several instances of each disruption type are considered. For link disruptions,
four different instances are solved to investigate how the objective function value and
computational time change with respect to the severity of the link disruption. The
severity of the link disruption is modeled by the number of impacted links, which was set
to 30, 60, 100, and 200 for the four instances. The results for link disruption are
summarized in Table 4.4. The results indicate that increasing the number of OD pairs

and commodities (|K|) will increase computational efforts. Furthermore, for a particular

number of OD pairs, the objective function value increases with the number of impacted

links. The computational time is unaffected by the severity level.
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Table 4.4 Experimental Results for Actual Network

v,

Link Disruption Node Disruption Terminal Disruption
oD |K| Impacted Obj. Func. CP_U Impacted Obj. Func. CRU Impa}cted Obj. Func. CRU
Link # ($, thousands) (min) Node # ($, thousands) (min) Terminal #  ($, thousands) (min)
5 9 30 556.4 29.8 5 557.7 29.9 15 550.2 29.4
60 562.6 29.9 10 566.0 29.3 30 560.6 295
100 573.9 29.9 20 604.1 33.6 44 651.9 36.5
200 650.5 29.9 40 640.9 115.1
10 21 30 959.8 146.8 5 942.2 142.7 15 930.3 147.0
60 965.9 146.8 10 966.9 141.7 30 959.7 1435
100 979.3 142.6 20 1,015.1 154.9 44 1,077.8 173.2
200 1,085.1 146.2 40 1,061.4 720.2
20 43 30 1,478.8 484.1 5 1,461.2 486.2 15 1,481.3 483.5
60 1,484.9 487.8 10 1,505.8 479.6 30 1,534.3 493.7
100 1,500.9 486.7 20 1,558.4 528.2 44 1,705.8 636.5
200 1,625.2 485.5 40 1,609.5 1,204.9
50 87 30 3,885.8 1,937.8 5 3,870.7 1,937.2 15 3,959.0 1,953.7
60 3,895.9 1,930.4 10 3,983.3 1,945.6 30 4,137.3 2,036.3
100 3,952.3 1,926.4 20 4,062.6 2,007.6 44 * *
200 4,173.1 1,956.0 40 * *

*Program terminated due to memory limitation



For node disruptions, the four instances considered have 5, 10, 20, and 40 nodes
disrupted. As shown in Table 4.4, the objective function value and computational time
increase with higher number of OD pairs and commaodities. Unlike link disruption, the
computational time is affected by the number of disrupted nodes. Specifically, there is a
significant increase from 20 to 40 nodes for the 10 OD pairs case (154.9 minutes to 720.2
minutes).

For terminal disruptions, three instances are considered with 15, 30, and 44
terminals disrupted. The objective function value and computational time exhibit a
similar trend with respect to disruption severity as the link and node disruption cases.
Similar to the node disruption case, the computational time is affected by the number of
disrupted terminals.

Collectively, the numerical results indicate that, under link and node disruptions,
the majority of the commodity shipments are shipped via road-rail intermodal due to
lower rail cost and due to the robust freight transport network. A similar finding is
reported in a study done by Ishfaq (2013) who concluded that the layout of the U.S. road-
rail intermodal network and location of intermodal terminals provide sufficient
redundancies to handle disruptions. When intermodal terminals are disrupted, the model
indicates that commodities will be shipped via road directly. This result is expected since
highway network is redundant and robust, as well as cost-effective.

In the aforementioned experiments, the unit penalty cost is assumed to be
$10,000. This value is chosen to be high to ensure that the unsatisfied demand is
minimized. To test the sensitivity of this parameter, experiments are performed where

the unit penalty cost is set to $2,500, $5,000, and $7,500. It is found that these three
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values for penalty cost resulted in same amount of unsatisfied demand. The computation
time is observed to increase as the penalty cost value decreases. It can be concluded that
the solution is not sensitive to the unit penalty cost parameter, given that it is set to a
sufficiently large value. To test the sensitivity of the delivery deadline parameter, an
experiment is performed where the delivery deadline is set to 14 days. The solution,
including objective function value and computation time, is found to be the same when
the delivery time is 7 days. This result suggests that the majority of the shipments require
less than 7 days to reach their destinations, and thus, extending the delivery deadline has
no effect on the solution.

Figure 4.3a illustrates how the optimal route generated by the model for a
particular commodity going from Greensboro, NC to Dallas, TX under node disruptions
compares with an actual route that a carrier would use. The left part of Figure 4.3a
shows the optimal route generated by the model (shown in red), and the right part shows
the route that a freight carrier would use (Direct Freight Services, 2015). By inspection,
it is clear that the two routes are very similar to each other. However, there is one notable
difference, and that is the model indicates road-rail intermodal to be optimal whereas the
freight carrier chooses road-only. This discrepancy can be attributed to the fact that the
carrier does not consider the potential node disruptions in the network.

Figure 4.3b illustrates how the optimal route generated by the model for a
particular commodity going from Miami, FL to Houston, TX under link disruptions. By
inspection, it is clear that the carrier chooses the route based on minimum travel time.
The model, on the other hand, recognizes the potential link disruptions in the network and

thereby chooses an intermodal route that avoids using the U.S. interstates (I-10 and 1-12)
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through Louisiana. This is because historically this area is vulnerable to hurricanes, such
as Rita and Katrina. This result illustrates the importance of considering network

disruptions when selecting a route for multicommodity freight in an intermodal network.
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Figure 4.3 Optimal routes for selected OD pairs: (a) Greensboro — Dallas and (b) Miami —
Houston.

4.5 CONCLUSION

This study developed a new stochastic mixed integer programming model to
determine the optimal routes for delivering multicommodity freight in an intermodal
freight network that is subject to disruptions (e.g., link, node, and terminal disruptions).

To solve this model, the Sample Average Approximation (SAA) algorithm is adopted.
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The model and solution algorithm was tested on a hypothetical 15-node network and an
actual intermodal network in the Gulf Coast, Southeastern and Mid-Atlantic regions of
the U.S.

The numerical experiments indicated that the model is capable of finding the
optimal solutions for both small and large networks. The model runtime for a
hypothetical 15-node network was reasonable (less than 3 hours for all instances).
Naturally, the model runtime will increase as the network gets larger, as well as for the
number of OD pairs and commodities. While the computational time was affected by the
severity level of node and terminal disruptions, it was unaffected by link disruption
severity. The model results indicated that under disruptions, goods in the study region
should be shipped via road-rail intermodal due to lower rail cost and due to the built-in
redundancy of the freight transport network. Furthermore, the model indicated that for a
particular number of OD pairs, the total system cost will increase as the number of
disrupted elements increases. The routes generated by the model are shown to be more
robust than those typically used by freight carriers because they are often selected

without consideration of potential network disruptions.
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CHAPTER 5
RELIABLE ROUTING OF INTERMODAL FREIGHT UNDER

UNCERTAINTY?

Freight transportation involves various transportation modes, such as road, rail,
air and water. The use of different transportation modes provides greater efficiency
because it takes advantages of the strength of each transportation mode. Intermodal
freight transportation uses two or more modes to transport goods without handling the
goods themselves. Intermodal transportation offers an attractive alternative to unimodal
transportation by highway in terms of cost for freight transported over long distances, and
it reduces the carbon footprint of transport compared to the highway mode (Bureau of
Transportation Statistics, 2015). In recent years, intermodal freight transport volume has
grown significantly due to the aforementioned advantages.

Transportation infrastructures, particularly those supporting intermodal freight,
are vulnerable to natural disasters (e.g., hurricane, earthquake, flooding) and man-made
disasters (e.g., accidents, labor strike). These disruptions can drastically degrade the
capacity of a transportation mode and consequently have adverse impacts on intermodal
freight transport and freight supply chain (Miller-Hooks et al., 2012; Uddin and Huynh,
2016). For examples, Hurricane Katrina significantly damaged the transportation

infrastructure in the Gulf Coast area (Godoy, 2007), and the West Coast port labor strike

1This chapter has been adapted from “Uddin, M., & Huynh, N. (2019). Reliable routing of road-rail
intermodal freight under uncertainty. Networks and Spatial Economics. Advance online publication.”
Reprinted here with permission from the publisher.
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severely disrupted the U.S. freight supply chain (D’Amico, 2002). Therefore, there is a
need to develop a modeling framework that takes into account the reliability of the freight
transport network when making strategic routing decisions. Network reliability means
that the network can continue to deliver acceptable service when faced with disasters or
disruptions that reduce capacity of network links, nodes, and intermodal terminals.

The majority of the studies that deal with intermodal freight shipments seek to
minimize routing cost. Barnhart and Ratliff (1993) proposed a model for minimizing
routing cost in a road-rail intermodal network. They developed procedures involving
shortest paths and matching algorithm to help shippers in deciding routing options.
Boardman et al. (1997) developed a software-based decision support system to assist
shippers to select the best combination of transportation modes considering cost, service
level, and the type of commodity. Xiong and Wang (2014) developed a bi-level multi-
objective genetic algorithm for the routing of freight with time windows in a multimodal
network. Ayar and Yaman (2012) investigated an intermodal multicommodity routing
problem where release times and due dates of commodities were pre-scheduled in a
planning horizon. Uddin and Huynh (2015) developed a methodology for freight traffic
assignment in large-scale road-rail intermodal networks to be used by transportation
planners to forecast intermodal freight flows. Rudi et al. (2016) proposed a capacitated
multicommodity network flow model for the intermodal freight transportation problem
that seeks to minimize transportation costs, carbon emissions, and in-transit holding
costs. Their model was validated using industry data from an automotive supplier.

All of the aforementioned studies assume that the freight transport network is

always functioning and is never disrupted. Daskin (1983) considered disruptions by
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taking into account the facility unavailability in a maximum covering location problem.
Snyder and Daskin (2005) presented a uncapacitated location problem considering failure
of facilities in the network. Their reliability models find facility location by taking into
account the expected transportation cost after failure, in addition to the minimum
operational cost. Cui et al. (2010) extended this work to consider failures with site-
dependent probabilities and re-routing of customers when there are failures. Peng et al.
(2011) also considered disruptions at facilities in their work on design of reliable logistics
network. In contrast, Cappanera and Scaparra (2011) sought to improve network
reliability by optimally allocating protective resources in shortest path networks. Chen
and Miller-Hooks (2012) developed a method to quantify resilience of an intermodal
freight transport network. Miller-Hooks et al. (2012) extended this work to maximize
freight transport network resiliency by implementing preparedness and recovery activities
within a given budget. Huang and Pang (2014) evaluated resiliency of biofuel transport
networks under possible natural disruptions. They formulated a multi-objective
stochastic program to optimize the total system cost and total resilience cost.
Marufuzzaman et al. (2014) proposed a reliable multimodal transportation network
design model, where intermodal hubs are subject to site-dependent disruptions. This
model employed a probabilistic framework. It was solved using the accelerated Benders
decomposition algorithm and tested on a large-scale network. Uddin and Huynh (2016)
proposed a stochastic mixed-integer model for the routing of multicommodity freight in
an intermodal network under disruptions. Their study found that goods are better shipped
via road-rail intermodal network during disruptions due to the built-in redundancy of the

freight transport network.
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A number of studies have considered network vulnerability in planning decision.
Peterson and Church (2008) investigated rail network vulnerability by formulating both
uncapacitated and capacitated routing-based model. Garg and Smith (2008) presented a
methodology for designing a survivable multicommodity flow network, which analyzes
failure scenarios involving multiple arcs. Rios et al. (2000) studied a similar problem,
but their objective was to find the minimum-cost capacity-expansion options such that
shipments can still be delivered to receivers through the network under disruptions.
Gedik et al. (2014) proposed a capacitated mixed-integer interdiction programming
model for coal transportation. They assessed network vulnerability and re-routing of coal
by rail under network disruptions.

Another area of research that involves network uncertainty is disaster
management, relief routing, response planning, and emergency and humanitarian
logistics. Researchers have developed a wide variety of classical optimization programs
to address these challenging problems. Haghani and Oh (1996) presented a disaster relief
routing model for multicommodity freight in a multimodal network using the concept of
time-space network. In the work by Ozdamar et al. (2004), commodity relief routing was
studied as a hybrid of classical multicommodity network flow and vehicle routing
problem.  Given the uncertainty associated with network disruption, their model
attempted to deliver commodities such that unsatisfied demand is minimized in a
multimodal network. Barbarosoglu and Arda (2004) proposed a stochastic programming
model for transporting multicommodity freight through a multimodal network during a
natural disaster. Their model considered random arc capacity, where randomness is

represented by a finite sample of scenarios. Chang et al. (2007) studied the rescue
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resources location-routing problem in the event of a flooding disaster. Shen et al. (2009)
investigated how to route vehicles in the event of a large-scale bioterrorism emergency.
Their solution approach involves adjusting routes generated at the planning level to
consider effects of disruptions. Rennemo et al. (2014) proposed a model comprising
several stages to optimally locate relief distribution facilities.

Table 5.1 provides a summary of the key features addressed by prior studies
related to the routing of freight. All of the prior studies where network uncertainty is
considered make an explicit assumption about the probability density function (PDF) of
the network link and/or node capacity. However, given that disruptive events are rare,
there is often limited or no historical data available to determine the PDF of the network
link or node capacity under a particular disruption scenario. A wrong assumption could
have serious consequences of over design or under design. For example, assuming that a
link capacity will follow the normal distribution in the event of a flash flood when in fact
it follows a gamma distribution would lead to over design. This study contributes to the
current body of knowledge by relaxing this explicit PDF assumption. A novel
distribution-free approach is used to provide probabilistic guarantees on the resulting
routes. This approach uses symmetric random variation, which is a popular method for

solving robust optimization models (Bertsimas and Sim, 2004; Ng and Waller, 2012).

5.1 PROBLEM DESCRIPTION AND MODEL FORMULATION
The main objective of this study is to develop a reliable routing model for
shipment of freight on a road-rail intermodal network that is subject to capacity

uncertainty. The problem consists of determining the routes for commodity shipments
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from their origins (shippers) to destinations (receivers). In this study, it is assumed that
the origins and destinations are only accessible via highway links and that every
intermodal route will involve at least two intermodal terminals. Additionally, it is
assumed that the shipper and receiver facilities are either warehouses or distribution
centers and that these facilities do not have rail connections. Figure 5.1 presents a typical
road-rail freight transportation network where shipments can be transported via road-only
or intermodal. The network consists of freight shippers, receivers, intermodal terminals,

highway links, and rail lines.

Table 5.1 Summary of Prior Studies on the Routing of Freight

Study Mode Multi Capacitated  Delivery Uncertainty Probability
Commodity Link Deadline  Consideration  Distribution
Assumption
Haghani and Oh (1996) Multiple v Multiple
Barbarsoglu and Arda . .
v v v
(2004) Road, air Road, air
Garg and Smith (2008) Road v Road v v
Ayar and Yaman (2012) Road, v Water v
water
Chen and Miller-Hooks . .
(2012) Road, rail Road, rail
Miller-Hooks et al. (2012)  Road, rail Road, rail v
Gedik et al. (2014) Rail Rail v v
Rudi et al. (2016) Road, rail, Road
water
Uddin and Huynh (2016)  Road, rail v Road, rail v v v
This current study Road, rail v Road, rail v v

Following the notations from Uddin and Huynh (2016), it is assumed that a road-

rail intermodal freight transportation network is represented by a directed graph

G=(N,A), where N is the set of nodes and A is the set of links. Set N consists of the set

of major highway intersections H, the set of major rail junctions R, and the set of
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intermodal terminals S. Set A consists of the set of highway links A, and the set of
railway links A . Shipments can change mode at the intermodal terminal nodes, S. Each
highway link (i,j)e A, and railway link (i,j)e A- have unit transportation costs
associated with them for each commodity k e K shipment. Each intermodal terminal
se S has also a unit transfer cost for each commodity k e K shipment. The definitions

of sets, parameters, and decision variables are presented next, followed by the model

formulation.

Shipper Receiver

Destination
Terminal Rail
-

Origin
Terminal

“

»
Shipper Receiver

Figure 5.1 An example of road-rail freight transportation network.

5.1.1 Sets/Indices

set of major highway intersections
set of major rail junctions

set of intermodal terminals

set of highway links

set of railway links

set of origin-destination (OD) pairs

X O » » o 1 I

set of commodities

pc set of paths p connecting OD pair C

k commodity type, k e K

I, ],s node, i, j,seN
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ori°

des°®

an OD pair, ceC
origin node of an OD pair ceC

destination node of an OD pair ceC

5.1.2 Parameters

original demand of commodity k « K between OD pair ceC (expressed in
number of intermodal containers)
unit penalty cost for unsatisfied demand

unit cost of transporting commodity k < kK by truck in link (i, j)e A,
unit cost of transporting commodity k < k by rail in link (i, j)e A
unit cost of transferring commodity k e K in intermodal terminal se s
capacity of highway link (i, j)e A,

capacity of railway link (i, j)e A

capacity of intermodal terminal se s

travel time on highway link (i, j)e A,

travel time on railway link (i, j)e A,

processing time in intermodal terminal se s

delivery time for commodity k e K between OD pair ceC

sufficiently large number

sufficiently small number

5.1.3 Decision Variables

Cc
Xijk

fraction of commodity k e K transported in highway link (i, j)e A, between

OD pair ceC

fraction of commodity k K transported in railway link (i, j)e A, between

OD pair ceC

unsatisfied demand of commodity k e K between OD pair ceC
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F fraction of commodity k « kK between OD pair cecC transferred at terminal
seS

Yo binary variable indicating whether or not intermodal terminal ses s
selected for commodity k < K between OD pair cec (= 1 if intermodal
terminal s is selected for commodity k between OD pair ¢, = 0 otherwise)

S binary variable indicating whether or not there is any flow in highway link
(i, j)e A, for commodity k e kK between OD pair cec (= 1 if highway link
(i, j) carries flow of commodity k between OD pair ¢, = 0 otherwise)

S binary variable indicating whether or not there is any flow in railway link

(i, j)e A, for commodity k e k between OD pair cec (= 1 if railway link

(i, j) carries flow of commodity k between OD pair ¢, = 0 otherwise)

The multicommodity intermodal freight shipment routing problem is formulated

as follows.

ceCkeK j eAh I j < A seS

Min ZZ[dC[ Zﬁljkxljk_'_ Zﬁljk |jk+Zﬂsk sk]—’_IPU J (51)
(i,

Subject to
< +1 ifi=ori°

D Xe— D Xpusz -1 ifi=des®, VieH keK,ceC (5.2)
(hm)ehy, (milA 1= 0 otherwise

Zx,mk D> Xgu=0, VkeK,ceC (5.3)
(i,m)eAyizori®  (m,j)eA,: j=des®
XE <O V(i,meA keK,ceC (5.4)
XE +65,. <1 ¥(mi)e A keK,ceC (5.5)
Zx,mk>|v| me,k, Vieori®keK,ceC (5.6)
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S XE— D X& =0, VieRkeK,ceC

(i,n)eA (n,i)eA,

szmk Zx;;w >XE— D X =0, VseS,keK,ceC

(s,m)eAy, (m,s)eA, (s,n)eA, (n,s)eA,

_MYS(I:(— sznk ZXC <MYS(|:<, vVseS,keK,ceC

nsk =
(s,n)eA, (n,s)eA,

—F;k_ szmk D Xeg <F§, VseSkeK,ceC

(m,s)eA,

Z JktlJ+ Z Jktlj z W <TS, vpePkeK,ceC

(A, D) )e(A Np) se(Snp)
> 2 diXGe<Qy Wi j)e A,
ceCkeK
ZZd lek—QU’ (’ ) Ar
ceCkeK

D> D diFE <Q,, VseS

ceCkeK

dﬁ[l—ZXi‘}kJ:Uf, VkeK,ceC, j=des®

ieH

05, < X& <65 V(i,j)e/—\h,keK,CeC

ijk = 7Mijk = ijk»
55 < X5 <65, Vi, j)eA keK,ceC

&g <FL<Yg, VseSkeK,ceC
Xg €[01], v(i,j)eA.keK,ceC
Xs €[01], v(i,j)eA keK,ceC
Fe €[01], VseS,keK,ceC

U;eZ", VkeK,ceC

5Jke{0,l}, V(i, j)e AL keK,ceC
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(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
(5.17)
(5.18)
(5.19)
(5.20)
(5.21)
(5.22)

(5.23)



ss.ef0l), (i, j)eA keK,ceC (5.24)
Ye {01, VseSkeK,ceC (5.25)

The objective function (5.1) seeks to minimize the total system cost; specifically,
the system cost includes the transportation cost on highway and railway links, the transfer
cost at intermodal terminals, and the penalty cost for unsatisfied demands. Constraints
(5.2) to (5.6) ensure flow conservation at highway nodes (H). Similarly, constraint (5.7)
ensures flow conservation at railway nodes (R). Constraints (5.8) and (5.9) ensure flow
conservation at intermodal terminals (S); constraint (5.8) maintains the conservation of

flow if a terminal is selected whereas constraint (5.9) maintains the conservation of flow
if the terminal is not selected. The decision variables F* are calculated in constraint

(5.10). Constraint (5.11) ensures that commodity shipments are delivered before the
delivery deadline. Constraints (5.12) to (5.14) ensure that flows are less than or equal to
the capacity of highway links, railway links, and intermodal terminals, respectively.
Constraint (5.15) determines the unsatisfied demand. Lastly, constraints (5.16) to (5.18)
are the relational constraints, constraints (5.19) to (5.21) are the definitional constraints,
constraint (5.22) is the integrality constraint, and constraints (5.23) to (5.25) are the
binary constraints. For constraints (5.16) to (5.18), the left-hand side term could be 0
instead of the product of &. However, the formulation as presented provides a
computational advantage. In addition, unsatisfied demands are assumed to be integer
since the original demands are in number of intermodal containers.

As mentioned earlier, a transportation network may experience service
disruptions. Hence, the MIFR with deterministic link capacities are not always valid. To

account for uncertainty in the network, random capacity of highway link is denoted as
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A

Q,, random capacity of railway link is denoted as (3 and random capacity of

ij

intermodal terminal is denoted as QS. Using these definitions, equations (5.12), (5.13),

and (5.14) have the following form.

>SS dexE <Gy, Y Y dXe <Q, . Y Y iR <0, (5.26)

ceCkeK ceCkeK ceCkeK
To incorporate the modified constraints above into the optimization model,
chance constraint programming is employed which guarantees that the solution satisfies

the constraints over a subset of the sample space. Assume the following for a highway
link capacity Q.

Q= Qij(“lijééu) (5.27)
where 4;>0 is a measure of uncertainty and 5”- represents a symmetric random variable
on the interval [-1, 1]; meaning that & and -¢&; have identical distributions. It should be

noted that 4; and ¢&; is chosen in a way where Q; >0 always holds. Similarly, assume

the following for the railway link and intermodal terminal capacities.

A

éij zéij(l'i_z'jgijj (5.28)

A

3, =Q.f+ 42 (5.29)

Let E[Z] denotes the expected value of a random variable z; then, E [Qij ] =Q,

, E[é}ﬂj”, and E[QS]:QS. Hence, the model only requires the specification of

1

mean values and the support of the random quantities instead of a specific probability

distribution. Similar to chance constraint programming, this model has control over the

90



likelihood that the constraints in equation (5.26) are violated. The following additional

constraints are introduced in the model.

Zkzdlfxi?k <Q; -6 (5.30)
ceCkeK
Zkzdﬁiﬁ-kﬁéu -0, (5.31)
ceCkeK
zzdlsti SQs_es (532)

ceCkeK

where 6,>0, 5” >0, and ¢, >0. The following probability expression

ceCkeK

Pr{z > X > cj”} (5.33)

can be interpreted as the likelihood that the shipments based on the deterministic estimate

of the highway link capacity exceed the realized capacity. To avoid this situation the

probability in equation (5.33) needs to be acceptably small. Let us assume that Xj, is a

feasible solution of the model defined by equations (5.1) to (5.25), (5.30) to (5.32), then it

follows:

Pr{ZZd;xgk >Q“}: Pr{ZZdEXﬁk >Q;(1+ 44 )} <Pr{-Q4é >0} (534

ceC keK ceC keK

where the inequality follows from the following implication of events: since X, is

feasible, then the event {ZdeXﬁk >Qij(1+ lijéfij)} implies the event {—Qijﬂ,,jfij > 0”}. If

ceCkeK
the probability distribution of éij is assumed to be known, the right-most probability in

equation (5.34) can easily be bounded. This is similar to a chance constraint

programming approach.
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Using a distribution-free approach (i.e., there is no explicit assumption about

probability distributions), without loss of generality, let us assume that » >0. Then it

follows:
Pr{—Q../Lé_. >0..}: Prié < % |_ Prs & >i
ij71) 2ij ij ij _Qij/l,j i Qijﬂf.j
A 779i.
=Priexp(ns, |>exp| ——
(ool oo 3
Markov’s inequality gives the following equation from the last part of the above.

Pr{exp(nfij ) > exp(%}} <exp [g—j‘] E [exp(mfij )} (5.36)

1j75]

(5.35)

Since cfij is a symmetric random variable, we can express E[exp(m;ij )] as follows:

E| exp(n;) | = [, expry) dF () + [ exp(ry) dF (y) (5.37)
= [.[exp(ny)+exp(-ny) |dF () (5.38)
< max[ exp(17y) +exp(~1y) JdF (y) (5.39)
<[ exp(r) +exp(-1) ][ dF (y) (5.40)
=[ exp (i) +exp(-17) /2 (5.41)

Equation (5.38) holds due to the symmetry of zfij and equation (5.39) holds since the

integrand is replaced by its maximum value. Inequality (5.40) is obtained by using the
fact that integrand in equation (5.38) is maximized at y=1. Again, using the symmetry
equation (5.41) is obtained. Taylor series expansions of exp() and exp(-7) give us the

following.
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[exp(n)+exp(-n) ]/ 2<exp(n’ 1 2) (5.42)
Now, since n >0 is arbitrary, the tightest possible bound can be obtained by
minimizing over n. Therefore, using the above, equation (5.36) can be written as

follows:

Pr{exp(ryéi ; )> exp{%}} < min exp[éLZ”J exp(n2 / 2) (5.43)

ij i >0 ijij
To obtain equation (5.43) from the equation (5.36), it is assumed that random
variations are symmetric, which is a common approach for solving robust optimization
models (Bertsimas and Sim, 2004; Ng and Waller, 2012). The right-hand side of the

equation (5.43) is strictly convex; hence, the unique optimal solution can be obtained by

taking the derivative and setting it equal to zero. The optimal solution is:

— 5 21 (5.44)
ij ]

Substituting the above value into equation (5.43), the following can be obtained.

2 779ij - 95
Pr{exp(nfi i )> exp(QMﬁj j} < exp[WJ (5.45)

The above discussion is summarized in the following proposition.

Proposition 5.1.1 If fij is a symmetric random variable with support [-1, 1] and

0; = —2Iog(qij)Qij2,”. , where 0<q;; <1, then

Pr{z Zdlfxiﬁk >Qij}£ Q;

ceCkeK

Likewise, by imposing the constraints (5.31) and (5.32), the following two propositions

can be shown.
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Proposition 5.1.2 If 5”- IS a symmetric random variable with support [-1, 1] and

0, = J-2log(d; ) Q;4; , where 0<{; <1, then
Pr{zzdﬁii§k>6ij}£aﬂ
ceCkeK
Proposition 5.1.3 If £ is a symmetric random variable with support [-1, 1] and

0, = \|-2log(q,) Q.4 , where 0<q, <1, then
| T T e o6 <

ceCkeK

5.2 NUMERICAL EXPERIMENTS

To demonstrate the applicability of the proposed modeling framework, an actual
road-rail freight transport network shown in Figure 5.2 was used. It covers all of the
states in the Gulf Coast, Southeastern and Mid-Atlantic regions of the U.S. The network
has a total of 682 links (U.S. interstates and major highways and Class I railroads) and
187 nodes, including 44 intermodal terminals. The Freight Analysis Zone (FAZ)
centroids from the Freight Analysis Framework version 3 (FAF3) database (Federal
Highway Administration, 2013) were treated as actual origins and destinations of
commodity shipments. There is a total of 48 centroids in the study region. Origin-
Destination (OD) pairs were constructed from these 48 FAZ centroids, and demands are
obtained from the FAF3 database. The demand data were filtered to include only those
commaodities typically transported via intermodal (Cambridge Systematics, 2007), and
demands were converted into containers using an average load of 40,000 Ibs per

container. It was assumed that all commodities need to be delivered within 7 days. The
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transport cost on highways and railways were estimated to be $1.67 per mile per
shipment (Torrey and Murray, 2014) and $0.60 per mile per shipment (Cambridge
Systematics, 1995), respectively. The transfer cost at intermodal terminals was estimated
to be $70 per shipment (Winebrake et al., 2008a). Using free-flow speeds, the travel

times on highway and railway links were calculated.

Intermodal Terminals

. 5 FAZ Centroids
% Highways

Railways

Figure 5.2 Large-scale U.S. road-rail intermodal network.

To simulate network uncertainty, three types of disruptive events were considered
in this study: (1) link disruption, (2) node disruption, and (3) intermodal terminal
disruption. Note that affected links, nodes, or terminals are selected based on their
vulnerability. A factorial experimental design (FED) was used to examine the effect of
confidence level and capacity uncertainty parameters in the proposed model on total
system cost (i.e., objective function value). In case of FED, “factors” and “levels” are
utilized; “factors” are the variables that are chosen to be studied and “levels” are the
predefined discrete values of the factors. The combination of all levels of factors are
considered and based on the resulting total system cost the effect of each combination of

factors and levels is studied. Table 5.2 provides a summary of the FED. Three “factors”
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were considered: (1) number of disrupted elements, (2) confidence level (qij,qij,qs), and
(3) capacity uncertainty (zﬁ,,{”,zs). For an experiment with a particular number of OD

pairs and commodities, the combination of factors and levels result in a total of 112
instances for link disruptions, 112 instances for node disruptions, and 84 instances for

intermodal terminal disruptions.

Table 5.2 Summary of Factorial Experimental Design

Levels
Factors Link disruption Node disruption Terminal disruption
Number of disrupted 1) 30, (2) 60, (3) 100, and 1) 5, (2) 10, (3) 20, and
p (1) 30, (2) 60, (3) (1)5,(2) 10, (3) (1) 15, (2) 30, and (3) 44
elements (4) 200 (4) 40
Confidence level (1) 0.05, (2) 0.1, (3) 0.15, (1) 0.05, (2) 0.1, (3) (1) 0.05, (2) 0.1, (3) 0.15,
(016504 and (4) 0.2 0.15, and (4) 0.2 and (4) 0.2
Capacity uncertainty (1) 0,(2)0.05,(3) 0.1, (4) (1)0,(2)0.05,(3)0.1, (1)0,(2)0.05, (3) 0.1, (4)
(i 2) 0.15, (5) 0.2, (6) 0.25, and (4) 0.15, (5) 0.2, (6) 0.15, (5) 0.2, (6) 0.25, and
e (703 0.25, and (7) 0.3 (703

The proposed modeling framework was implemented in Python, and the IBM
ILOG CPLEX 12.6 solver was used to solve the mixed-integer program. Experiments
were run on a personal computer with Intel Core i7 3.20 GHz processor and 24.0 GB of
RAM. For a given level of confidence and uncertainty level, using propositions 5.1.1 to
5.1.3, the amount of capacity reductions (¢) can be obtained. Figures 5.3 to 5.6 present
the experimental results for the real-world network for varying OD pairs and
commodities.

Figure 5.3 depicts the resulting objective function values for 5 OD pairs (9
commodities) of shipments: (a) is for 30 disrupted links, (b) is for 60 disrupted links, (c)

is for 100 disrupted links, (d) is for 200 disrupted links, (e) is for 5 disrupted nodes, (f) is
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for 10 disrupted nodes, (g) is for 20 disrupted nodes, (h) is for 40 disrupted nodes, (i) is
for 15 disrupted intermodal terminals, (j) is for 30 terminals, and (k) is for 44 terminals.
It can be seen that the objective function value increases with the level of uncertainty.
Furthermore, increased confidence level leads to an increase in the objective function
value. As expected, the objective function value increases as the number of affected links
increases. A similar trend is observed for node and intermodal terminal disruptions. The
objective function value was highest when all of the intermodal terminals were disrupted.
This finding is logical because when all of the intermodal terminals are disrupted,
commaodities can only be shipped via road.

Figure 5.4 shows the variations of objective function values under different levels
of capacity uncertainty and confidence levels for 10 OD pairs and 21 commodities.
Figure 5.5 shows variations for 20 OD pairs and 43 commodities, and Figure 5.6 shows
variations for 50 OD pairs and 87 commaodities. The objective function values follow the
same pattern observed in the 5 OD pairs scenario.

Collectively, the results indicate that under link and node disruption scenarios,
most shipments are shipped via road-rail intermodal when a lower confidence level is
considered. This can be attributed to the lower rail cost. When a higher confidence level
is required under link and node disruptions, shipments are transported by road directly.
This is can be attributed to the fact that a truck can always find an alternative route on the
highway network when the intermodal network is disrupted. Freight shippers could use
the above findings to make shipping decisions when the intermodal network is disrupted
by some events. In summary, the managerial implications of the findings are that if

freight shippers want a higher reliability for the delivery of its shipment under disruptions
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they should ship via truck only. On the other hand, if reliability is not a concern, they
should ship via road-rail intermodal due to lower cost.

After analyzing the experimental results, it is possible to quantify and compare
vulnerability of different elements in road-rail intermodal freight transport networks. The
observations are summarized in two propositions. Before presenting the propositions, an
index called importance is introduced. It is assumed that a link is disrupted when its

travel time (f;) is greater than the typical travel time (t;). In particular, the term ¢,

denotes the link travel time (with uncertainty) under the disruption scenario, and the term

t; denotes the link travel time (without uncertainty) under the normal scenario. The
importance of a link (i, j)e A with respect to the entire network is defined as follows.

The term d¢Xg, is a weight for each commodity k Kk and OD pair cec combination.

EDIIL AR .
et =eChek (i, j)eA 5.46
: szkxijktij © ( )

ceCkeK

In this study, vulnerability is defined in terms of reduced serviceability. It is
possible to measure the reduced serviceability (i.e., vulnerability) by computing the
increase in generalized cost of travel (i.e., travel time) for commodity shipments (Jenelius
et al., 2006). To measure and compare the vulnerability of transportation network
elements, a number of measures have been developed. These include criticality (Jenelius
et al., 2006), importance (Jenelius et al., 2006; Rupi et al., 2015), and exposure (Jenelius
et al., 2006). The importance is defined above as the consequences of a network element
in the road-rail intermodal network being disrupted. It is computed by accounting for the

increase in travel time for each network element which in turn affects the performance of
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the network. For this reason, importance can be used to measure and compare the
vulnerability of a network element. Furthermore, this index can be used to compare
vulnerability across different types of network elements.

For a node disruption, all links connected to that node are affected. If set J

includes all the nodes connected to a specific node i', i.e., J ={j |(i"j)e Ai'= j}, then

the importance of node i’ with respect to the entire network is defined as follows:

NP = Ly (5.47)

jed

The following two propositions apply to intermodal freight transport networks.

Proposition 5.2 Impact of a node disruption is always greater than that of a link
disruption if and only if both elements are affected by the same disruptive event.

Proof. Suppose that impact of a network element disruption can be quantified by the
importance measures defined above. Thus, the network element that has a higher
importance value will have a greater impact on an intermodal freight transport network
during a disruptive event. During a disruption, if the relative increase in link travel time (

f;/t;) is the same for all links inside the affected region or area, then by definition,
|3]>2, and hence, the following always holds for any node i (i=i" or i=i").

NP> L, (i j)e A (5.48)

ij

Proposition 5.3 Impact of an intermodal terminal disruption is always greater than that
of a node disruption if and only if both elements are affected by the same disruptive

event.
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Proof. The importance of a terminal with respect to the entire network is defined as

follows:

Ntnet — Z L;\jgt + L;];t (549)

jled
The set J' includes all the nodes connected to the terminal t except for the dummy node
d,i.e, J’=J\{d}; to model a disruptive event, a dummy node and a dummy link is

inserted between the terminal node and one of the network links connected to it. The

travel time on the dummy link (t,) is very large in the event of a disruption. Hence, the

importance of any network node i is always less than the importance of the terminal that

it is connected to. Mathematically, this relationship can be expressed as follows.

N > NPt (5.50)

Corollary 5.1 Impact of an intermodal terminal disruption is always greater than that of
a link disruption if and only if both elements are affected by the same disruptive event.
Proof. From Proposition 3, for any node i’ and intermodal terminal t, we have the

following.

N5 N (55
From Proposition 2, for any node i’ and link (i, j)e A, we have the following.

NP> L (5.52)
Hence, the following must always hold for any intermodal terminal t and link (i, j)e A.

NS (5.53)
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5.3 SUMMARY AND CONCLUSION

This chapter proposed a new reliable modeling framework to determine the
optimal routes for delivering multicommodity freight in an intermodal freight network
that is subject to uncertainty. The finding from the proposed model is quite simple and
intuitive: to ensure reliability, the model suggests that route planning be done by
assuming the network elements have lower capacity than they actually have. To date, no
formal framework has been developed to analytically determine the amount of capacity
reduction needed to obtain a desired reliability level. This study addressed this important
gap by proposing a novel distribution-free approach. The framework is distribution-free
in the sense that it only requires the specification of the mean values and the uncertainty
intervals. The developed model was tested on an actual intermodal network in the Gulf
Coast, Southeastern and Mid-Atlantic regions of the U.S. It is found that the total system
cost increases with the level of capacity uncertainty and with increased confidence levels

for disruptions at links, nodes, and intermodal terminals.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

Four research studies are presented in this dissertation that address practical
problems for road-rail intermodal freight transportation. The solutions to these problems
will make intermodal freight transport more efficient and cost-effective.

In Chapter 2, a methodology is presented for freight traffic assignment in large-
scale road-rail intermodal networks. Given a set of freight demands between origins and
destinations and designated modes (road-only, rail-only, and intermodal), the model finds
the user-equilibrium freight flow. The proposed model was tested using the U.S.
intermodal network and the Freight Analysis Framework, version 3 (FAF3), 2007 freight
shipment data. The results of the analysis, volume and spatial variation of freight traffic,
show that the model produces equilibrium flow pattern that was very similar to the FAF3
flow assignment.

In Chapter 3, a stochastic model is developed to assign freight traffic in a large-
scale road-rail intermodal network that is subject to network uncertainty. For a specific
disaster scenario and given a set of freight demands between origins and destinations and
designated modes (road-only, rail-only, and intermodal), the model finds the user-
equilibrium freight flow. Four disasters were considered in the numerical experiments:
earthquake, hurricane, tornado, and flood. The proposed model and algorithmic
framework were tested using the U.S. road-rail intermodal network and the FAF3

shipment data. The results indicated that when disasters are considered the freight ton-
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miles are higher than when no disaster is considered. The resulting user-equilibrium
flows clearly indicate the impact of disasters; that is, truck and rail flow are shifted away
from the impacted areas.

In Chapter 4, a stochastic mixed integer programming model is developed to
determine the optimal routes for delivering multicommodity freight in an intermodal
freight network that is subject to disruptions (e.g., link, node, and terminal disruptions).
The model results indicated that under disruptions, goods in the study region should be
shipped via road-rail intermodal due to lower rail cost and due to the built-in redundancy
of the freight transport network. Furthermore, the model indicated that for a particular
number of OD pairs, the total system cost will increase as the number of disrupted
elements increases. The routes generated by the model are shown to be more robust than
those typically used by freight carriers because they are often selected without
consideration of potential network disruptions.

In Chapter 5, a reliable modeling framework is proposed to determine the optimal
routes for delivering multicommodity freight in an intermodal freight network that is
subject to uncertainty. The framework is distribution-free in the sense that it only
requires the specification of the mean values and the uncertainty intervals. The
developed model was tested on an actual intermodal network in the Gulf Coast,
Southeastern and Mid-Atlantic regions of the U.S. It is found that the total system cost
increases with the level of capacity uncertainty and with increased confidence levels for
disruptions at links, nodes, and intermodal terminals.

The environmental impact of road-rail intermodal freight could be assessed in the

future. Freight transportation activities are responsible for a large share of air pollution
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and greenhouse gas emissions in the U.S. Various freight transportation modes (such as
road, rail, intermodal, etc.) have significantly different impacts on air quality and
environmental sustainability. For that reason, using the publicly available data (e.g.,
Freight Analysis Framework) and advanced econometric model, the environmental
impact of intermodal freight could be investigated based on various factors, such as value

and distance of shipment, commodity types, and oil price.
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