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This paper investigates factors affecting injury severity of crashes involving HAZMAT large
trucks. It uses the crash data in the state of California from the Highway Safety Information
System, from 2005 to 2011. The explanatory factors include the occupant, crash, vehicle,
roadway, environmental, and temporal characteristics. Both fixed- and random-
parameters ordered probit models of injury severity (where possible outcomes are major,
minor, and no injury) were estimated; the random-parameters model captures possible
unobserved effects related to factors not present in the data. The model results indicate
that the occupants being male, truck drivers, crashes occurring in rural locations, under
dark-unlighted, under dark-lighted conditions, and on weekdays were associated with
increased probability of major injuries. Conversely, the older occupants (age 60 and over),
truck making a turn, rear-end collision, collision with an object, crashes occurring on non-
interstate highway, higher speed limit highway (�65 mph), and flat terrain were associ-
ated with decreased probability of major injuries. This study has identified factors that
explain injury severities of crashes involving HAZMAT, and as such, it could be used by pol-
icy makers and transportation agencies to improve HAZMAT transport, and thus, the over-
all highway safety.
� 2017 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Introduction

The transport of hazardous materials (HAZMAT) is complex and poses serious safety, security, and environmental con-
cerns. HAZMATs are capable of producing catastrophic effects on public health, public safety, environment, and property,
if released. The transport of HAZMAT ranges from a single shipment of gasoline in a container moved by a truck to bulk ship-
ments of poisonous, explosive, or radioactive materials in tanks moved by vessels (Transportation Research Board, 2009).
According to the Commodity Flow Survey, in 2012, approximately 2.6 billion tons of HAZMAT was moved on the U.S. trans-
portation network by all the modes. Trucks moved about 60% of these HAZMATs by tonnage (U.S. Census Bureau, 2015).

HAZMAT crashes on highways often result in more severe injuries, although the number of crashes is low relative to the
amount of HAZMAT that moves on the highway. In 2014, a total of 3744 large trucks were involved in fatal crashes in the U.
S., of which 112 (about 3%) were carrying HAZMAT (FMCSA, 2016). A single crash involving a HAZMAT vehicle in a densely-
populated area has a much greater potential to cause significant casualty, injury, and damage to the environment and
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property than that of a typical commercial vehicle. Indeed, the majority of HAZMAT crashes lead to extensive property dam-
age and network disruption (Craft, 2004). Furthermore, HAZMAT crashes can increase the injury risk due to fires immedi-
ately after the crash; this might occur if vehicle carries gasoline or diesel. The incidents involving truck transport of
HAZMAT have adverse economic impact. For instance, the total cost of Class 3 (flammable and combustible liquid) HAZMAT
incidents was about $459 million in 1996 (Abkowitz et al., 2001). The severity of these type of crashes highlights the need to
investigate factors that contribute to HAZMAT truck crashes.

There have been a number of studies investigating the risk factors that contribute to injury severity of truck-involved
crashes. Duncan et al. (1998) developed an ordered probit model to determine the significant variables that influence levels
of injury when truck and passenger cars are involved in rear-end collisions on divided roadways. The authors used the 1993–
1995 North Carolina crash data from the Highway Safety Information System (HSIS). Chang and Mannering (1999) developed
nested logit models to study the injury severity of occupants for both truck-involved and non-truck-involved crashes using
the 1994 crash data from King County in Washington. Their study found that crashes involving trucks had higher injury
severity than those that do not involve trucks. Khorashadi et al. (2005) studied the difference between rural and urban driver
injury severities in truck-involved crashes. The authors used multinomial logit models to analyze the 1997–2000 California
crash data. Zhu and Srinivasan (2011) explored crash, vehicle, and driver factors that influence injury severity of truck-
involved crashes. They used ordered probit model to analyze crashes that occurred between April 2001 and December
2003 from the Large Truck Crash Causation Study (LTCCS). Lemp et al. (2011) used both standard and heteroskedastic
ordered probit models to identify the factors influencing injury severity of truck-involved crashes. The authors used the
LTCCS crash data from 17 states to determine the crash factors. Islam and Hernandez (2013a) analyzed truck-involved crash
factors using random-parameters ordered probit model and the 2005–2008 National Automotive Sampling System General
Estimates System data. They analyzed human, vehicular, road, environmental, and crash factors that influence injury severity
of truck-involved crashes. In another study, Islam and Hernandez (2013b) developed mixed logit models using the 2006–
2010 Texas Peace Officer’s Crash Reports database. Islam et al. (2014) developed four mixed logit models to analyze
single- and multi-vehicle truck-involved crashes on both rural and urban roadways in Alabama. All four of their models
focused exclusively on crashes where trucks were at fault. Cerwick et al. (2014) compared the performance of mixed logit
models and latent class methods in modeling truck-involved crash injury severity using the 2007–2012 Iowa crash data.
Pahukula et al. (2015) studied the effect of time of day on injury severity of truck-involved crashes. They used the 2006–
2010 Texas Peace Officer’s Crash Reports database and mixed logit models to identify significant factors. Most recently,
Uddin and Huynh (2017) investigated factors affecting injury severity of crashes involving trucks for different lighting con-
ditions on rural and urban roadways using the 2009–2013 Ohio crash data from the HSIS database. In summary, none of the
aforementioned studies have considered HAZMAT as one of the crash factors in analyzing injury severity of truck-involved
crashes.

The current body of literature on crash injury severity factors in road transport of HAZMAT is limited. Khattak et al. (2003)
studied the risk factors associated with large-truck rollovers and injury severity of occupants in single-vehicle crashes in
North Carolina from 1996 to 1998. The authors concluded that occupants of truck carrying HAZMAT received more severe
injuries. The chance of injuries for trucks carrying HAZMAT was found to increase by about 16%. Oggero et al. (2006) studied
1932 HAZMAT crashes and found that the majority of the crashes were releases, followed by fires, explosions and gas clouds.
Carson (2007) studied 44,012 large-truck crashes in Texas from 2004 to 2006 and found that HAZMAT interstate carriers
were involved in about 2% of the total crashes. Chen and Chen (2011) analyzed single- and multi-vehicle crashes involving
trucks on rural highways in Illinois from 1991 to 2000. For cases involving single-vehicle crashes, about 22% of the truck
drivers suffered incapacitating or fatal injury when the truck was carrying HAZMAT. For cases involving multi-vehicle
crashes, about 11% of the truck drivers suffered incapacitating or fatal injury. The study concluded that the probability of
incapacitating or fatal injury experienced by truck drivers would increase significantly if the truck carries HAZMAT; specif-
ically, about 48% for single-vehicle crashes and about 49% for multi-vehicle crashes. Shen et al. (2014) analyzed 708 road
tank truck crashes associated with HAZMAT in China from 2004 to 2011. They found that about 56% of the HAZMAT crashes
occurred on freeways and these crashes had a high percentage of HAZMAT spills. Rollover, run-off and rear-end collision
crashes had the higher likelihood of large spills. The majority of the crashes occurred in July and during the early morning
hours (4 am–6 am) and mid-day hours (10 am–12 pm). The study concluded that human errors and vehicle defects were the
main reasons behind those HAZMAT crashes. All of the aforementioned studies have explored the effect of HAZMAT on injury
severity of truck-involved crashes via the use of an explanatory variable. This approach is simplistic, and thus, provides lim-
ited information about the relationship between HAZMAT and injury severity. Given that HAZMAT-related crashes have dif-
ferent characteristics than that of typical truck-involved crashes such as having higher injury risk and occurring on HAZMAT
designated routes, a disaggregate approach is needed to better understand the contributing crash factors to this type of
crashes.

The purpose of this current study is to investigate factors that contribute to HAZMAT crashes on highways, where at least
one of the vehicles involved is a HAZMAT large truck, using discrete choice models; particularly, the ordered probit model.
The analysis is done by combing three separate datasets (crash, vehicle, and occupant) from the Highway Safety Information
System (HSIS) database into one master dataset that has all the explanatory variables, including occupant, crash, vehicle,
roadway, environmental, and temporal factors. In addition to using the standard ordered models to identify the significant
contributing factors on injury severity, a random-parameters ordered probit model is developed to account for unobserved
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heterogeneity in the data. Lastly, average direct pseudo-elasticities are calculated to determine the net change in the effect of
significant variables on the different injury severity levels.

Methodology

There have been numerous studies that examined the relationship between crash factors and injury severity levels using
discrete choice models, such as ordered probit/logit models, nested logit models, and multinomial logit models (cf.
Savolainen et al., 2011). Several of these studies have utilized ordered models since the dependent variable (e.g., injury
severity) is ordered in nature (e.g., no injury, minor injury, and major injury) (Abdel-Aty, 2003; Duncan et al., 1998;
Obeng, 2011; Pai and Saleh, 2008; Quddus et al., 2002; Zhu and Srinivasan, 2011). Furthermore, compared to other discrete
choice models, the differences between the ordinal categories are not assumed to be equal in ordered models (McKelvey and
Zavoina, 1975). For these reasons, an ordered probit model is used to determine the factors that affect injury severity in HAZ-
MAT truck crashes. To account for factors that can vary across observations, this study adopts the random-parameters probit
model in addition to the standard fixed-parameters model. Examples of the fixed-parameters ordered probit model for ana-
lyzing injury severity can be found in the works by Abdel-Aty (2003) and Obeng (2011), and those of random-parameters
ordered probit model can be found in the work by Islam and Hernandez (2013a).

Following the methodology presented in Washington et al. (2011), let the variable y� be defined as a latent and contin-
uous measure of injury severity for each observation n.
y� ¼ bX þ e ð1Þ

where y� = dependent variable; b = vector of coefficients to be estimated; X = vector of explanatory variables (e.g., occupant,
crash, vehicle, roadway, environmental, and temporal factors); and e = random error term (assumed to be normally dis-
tributed across observations with mean 0 and variance 1).

Under the ordered probit framework and Eq. (1), the observed ordinal data y (i.e., injury severity) for each observation are
defined as follows (Washington et al., 2011).
y ¼ 1 if y� 6 l0

y ¼ 2 if l0 6 y� 6 l1

. . .

y ¼ I if y� P lI�1

ð2Þ
where l is threshold between two adjacent injury levels that define y and is estimated jointly with the model coefficients b;
and I is the highest integer order injury severity level. The ordered selection probabilities can be calculated as follows
(Washington et al., 2011).
Pnðy ¼ 1Þ ¼ Uð�bXÞ
Pnðy ¼ 2Þ ¼ Uðl1 � bXÞ �Uð�bXÞ
. . .

Pnðy ¼ IÞ ¼ 1�UðlI�1 � bXÞ

ð3Þ
where Pnðy ¼ IÞ is the probability that y is the highest ordered injury severity level at observation n, given a crash occurred;
and Uð�Þ = cumulative normal distribution.

With the consideration of random parameters, it is possible to minimize inconsistent, inefficient, and biased parameter
estimates (Washington et al., 2011). As such, the random-parameters ordered probit model is formulated by considering an
error term, which is correlated with the unobserved factors in e. The observation heterogeneity is then translated into
parameter heterogeneity as follows (Greene, 2003).
bn ¼ bþ cn ð4Þ

where cn = randomly distributed term (e.g., a normally distributed term with mean 0 and variance r2).

The random parameters of the ordered probit model can be estimated using the simulated maximum likelihood method
and using Halton draws to maximize the simulated log-likelihood function (Christoforou et al., 2010). The functional form of
the parameter density function can be either normal, lognormal, triangular, or uniform (Anastasopoulos and Mannering,
2009; Gkritza and Mannering, 2008; Islam and Hernandez, 2013a).

The estimated parameters from the ordered models are not sufficient to determine the direction and magnitude of the
effect of the intermediate crash severity levels. For that reason, elasticity values of the parameters are often used for the
interpretation of the effect of the parameters on the probability of the injury severity levels. When the explanatory variables
are binary indicator variables (with value 0 or 1), direct pseudo-elasticity are used for each severity level and each observa-
tion. The direct pseudo-elasticity for the explanatory variables is computed as follows (Kim et al., 2008).
EPin
Xink

¼ Pin½given Xink ¼ 1� � Pin½given Xink ¼ 0�
Pin½given Xink ¼ 0� ð5Þ
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where Pin is defined by Eq. (3) and Xink is the k-th explanatory variable associated with severity level i for the crash obser-
vation n. Then, the average direct pseudo-elasticity is calculated for each injury severity level (Kim et al., 2008).

Data and empirical setting

The data used in this study consist of seven years of crash records (2005–2011) involving HAZMAT trucks in the state of
California, provided by the Highway Safety Information System (HSIS). HSIS provides highway patrol reported data about
crashes, and information about occupants, vehicles, and roadways involved in the crash.

The severity of crashes is recorded as one of five injury levels in the HSIS dataset. They are commonly defined using the
KABCO injury scale: fatality (K), disabling injury (A), evident injury (B), possible injury (C), and no injury (O). The fatal injury
includes crashes which result in death of occupant(s) within 30 days of crash. The disabling injury prevents the injured per-
son from walking, driving, or normal activities the person was capable of performing before the injury. The evident injury
includes crashes where injury is evident to observers at the crash location. The possible injury is one where the occupant
complains of pain, but it diminishes rapidly from the time of evaluation at the crash location to the time of examination
at the hospital. Lastly, the no injury is where the reported crash does not result in any injury. The KABCO injury codes pre-
sented in the dataset were consolidated into three levels—major injury (KA), minor injury (BC), and no injury (O)—to ensure
that a sufficient number of observations is available in each injury severity level. Similar approach is commonly used by
researchers to ensure sufficient sample size for model estimation (e.g., Chen and Chen, 2011; Islam et al., 2014; Milton
et al., 2008; Uddin and Huynh, 2017). The above three injury severity levels were coded in Eqs. (2) and (3) as follows: 1
for major injury, 2 for minor injury, and 3 for no injury.

From the HSIS dataset, 44 factors were selected as explanatory variables due to their availability and suitability in
explaining injury severity of HAZMAT truck crashes. These factors were broadly classified into (1) occupant characteristics,
(2) crash characteristics, (3) vehicle characteristics, (4) roadway characteristics, (5) environmental characteristics, and (6)
temporal characteristics. The observations with missing values were eliminated from the final dataset used for model esti-
mation. Table 1 presents the explanatory variables, which are cross-tabulated with the injury severity levels. The percent-
ages next to the major, minor, and no injury columns are row percentages while those in the last column are column
percentages. A few points are worth mentioning from the table. Although the total number of crashes occurring in rural loca-
tions was lower than that of urban locations, major injuries were more prevalent in rural locations (15.6% vs. 4.8%). Also,
lighting condition variables were found to substantially differ in major injuries to occupants. They were involved in more
major injuries under dark-unlighted conditions (15.6%) compared to under daylight (3.1%) and under dark-lighted (8.7%)
conditions. The injuries sustained by occupants were more severe in crashes occurring on interstate highways.

The final dataset consists of 1173 observations. Each observation is a crash record that records the injury severity of the
most severely injured occupant, along with occupant, crash, vehicle, roadway, environmental, and temporal characteristics.
Hence, the dependent variable is the injury severity of the most severely injured occupant of the HAZMAT truck involved in
the crash; the occupant could be either the driver or the passenger. As explained, the dependent variable had three levels of
injury severity: major injury, minor injury, and no injury. There were 71 observations involving major injury (6.1%), 696
observations involving minor injury (59.3%), and 406 observations involving no injury (34.6%).

Results and discussions

The fixed-parameters ordered probit model was estimated using the maximum likelihood method, and the random-
parameters model was estimated using the simulatedmaximum likelihood method. The statistical software NLOGIT (version
5) was used to estimate both models. During the model development process, variables were retained in the specification if
they have t-statistics corresponding to the 90% confidence level or higher on a two-tailed t-test. This study considered the
normal, lognormal, triangular, and uniform distributions for the random parameters. However, only the normal distribution
was found as statistically significant. Hence, the normal distribution was used in the random-parameters model. Two hun-
dred Halton draws were utilized, which has been found to produce accurate parameter estimates by other researchers (Islam
and Hernandez, 2013a,b; Milton et al., 2008; Pahukula et al., 2015). In case of random-parameters model, the parameters
were retained if their standard deviations have t-statistics corresponding to the 90% confidence level or higher. Furthermore,
to avoid the inclusion of highly correlated variables in the model, a correlation matrix was estimated and the results indicate
that none of the variables have a correlation value of more than ±0.20. Table 2 summarizes the estimation results for both
fixed- and random-parameters ordered probit models along with average direct pseudo-elasticities of the parameters. Note
that elasticities were calculated from the random-parameters model results. A negative coefficient for an explanatory vari-
able indicates that if the variable is true (i.e., has value 1), it will result in increased injury severity while all other variables
remaining constant, since higher injury severity has lower order in the data. Six parameters, older occupant (60 and over),
male occupant, rural location, dark-unlighted, dark-lighted, and higher speed limit (�65 mph), were found to be random
with statistically significant standard deviations.

Once the models were developed, a likelihood ratio test was performed to check the suitability of separate models for
single- and multi-vehicle crashes over one aggregate model as follows (Washington et al., 2011).



Table 1
Descriptive statistics of the explanatory variables.

Explanatory variable Major injury Minor injury No injury Total

Total 71 696 406 1173
Occupant characteristics
Age
Less than 18 5 2.0% 80 31.3% 171 66.7% 256 21.8%
18–24 23 8.8% 151 57.6% 88 33.6% 262 22.4%
25–59 32 6.2% 389 75.4% 95 18.4% 516 44.0%
Over 60 11 7.9% 76 54.7% 52 37.4% 139 11.8%

Gender
Male 64 9.4% 403 59.2% 214 31.4% 681 58.1%
Female 7 1.4% 293 59.6% 192 39.0% 492 41.9%
Driver
Yes 41 7.8% 440 83.3% 47 8.9% 528 45.0%
No 30 4.7% 256 39.7% 359 55.6% 645 55.0%

Crash characteristics
Location type
Rural 42 15.6% 157 58.2% 71 26.3% 270 23.0%
Urban 29 4.8% 539 58.3% 335 36.9% 903 77.0%

Collision type
Rear-end 2 0.5% 227 58.4% 160 41.1% 389 33.2%
Right-angle 18 6.3% 171 59.3% 99 34.4% 288 24.6%
Object 12 6.4% 124 66.3% 51 27.3% 187 15.9%

Lighting condition
Daylight 21 3.1% 421 61.5% 242 35.4% 684 58.3%
Dark-unlighted 22 15.6% 81 57.4% 38 27.0% 141 12.0%
Dark-lighted 23 8.7% 162 61.4% 79 29.9% 264 22.5%

Vehicle characteristics
Vehicle movement
Going straight 43 8.3% 289 56.0% 184 35.7% 516 44.0%
Making a turn 5 2.6% 101 53.2% 84 44.2% 190 16.2%
Seat belt 19 4.8% 220 55.8% 155 39.4% 394 33.6%

Number of vehicle
Single vehicle 51 12.6% 257 63.8% 95 23.6% 403 34.4%
Multi vehicle 20 2.6% 439 57.0% 311 40.4% 770 65.6%

Roadway characteristics
Highway type
Interstate 45 8.5% 316 59.6% 169 31.9% 530 45.2%
Non-interstate 26 4.0% 380 59.1% 237 36.9% 643 54.8%

Number of lanes
�4 46 6.1% 405 53.5% 306 40.4% 757 64.5%
>4 25 6.0% 291 70.0% 100 24.0% 416 35.5%

AADT
�15,000 14 6.4% 162 74.0% 43 19.6% 219 18.7%
15,001–50,000 15 3.3% 252 54.9% 192 41.8% 459 39.1%
50,001–100,000 12 6.6% 104 57.1% 66 36.3% 182 15.5%
>100,000 30 9.6% 178 56.9% 105 33.5% 313 26.7%

Speed limit
<45 3 1.9% 95 59.3% 62 38.8% 160 13.6%
45–60 31 8.1% 216 56.1% 138 35.8% 385 32.8%
�65 37 5.9% 385 61.3% 206 32.8% 628 53.6%

Surface condition
Dry 44 5.3% 474 57.3% 309 37.4% 827 70.5%
Wet 21 9.8% 116 54.2% 77 36.0% 214 18.2%

Environmental characteristics
Weather condition
Inclement 27 6.0% 159 59.8% 97 34.2% 283 24.1%
Clear 41 4.7% 523 60.3% 303 35.0% 867 73.9%

Terrain type
Flat 34 4.5% 441 58.3% 282 37.2% 757 64.5%
Rolling 16 6.1% 168 64.1% 78 29.8% 262 22.3%

Temporal characteristics
Time of day
7 AM–9:59 AM 6 3.6% 107 63.7% 55 32.7% 168 14.3%
10 AM–3:59 PM 12 2.9% 284 69.8% 111 27.3% 407 34.7%
4 PM–6:59 PM 4 1.6% 150 61.5% 90 36.9% 244 20.8%
7 PM–6:59 AM 49 13.8% 155 43.8% 150 42.4% 354 30.2%

Day of week
Weekday 44 5.5% 490 61.8% 259 32.7% 793 67.6%
Weekend 27 7.1% 206 54.2% 147 38.7% 380 32.4%
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Table 2
Parameter estimates and elasticities.

Explanatory variable Parameter estimates Average direct pseudo-elasticities�

Fixed-parameters
model

Random-parameters
model

Major
injury

Minor
injury

No
injury

Occupant characteristics
Age (1 for age group of over 60 years, 0 otherwise) 0.26** 0.58*** (2.00***)y �101.1% �21.2% 101.8%
Male (1 if male, 0 otherwise) �0.13* �0.06* (0.49***)y 18.0% 1.8% �8.5%
Driver (1 if driver, 0 otherwise) �1.17*** �2.25*** 908.7% 59.9% �297.1%
Crash characteristics
Read-end (1 if rear-end collision, 0 otherwise) 0.39*** 0.53*** �141.6% �17.5% 84.4%
Object (1 if collision with an object, 0 otherwise) 0.41*** 0.50*** �100.1% �17.6% 84.7%
Rural (1 if crash occurred at a rural location, 0 otherwise) �0.35*** �0.53*** (1.90***)y 303.3% 14.0% �68.2%
Dark-unlighted (1 if crash occurred under dark-unlighted

condition, 0 otherwise)
�0.33** �0.54*** (1.65***)y 370.7% 13.2% �64.5%

Dark-lighted (1 if crash occurred under dark-lighted condition, 0
otherwise)

�0.43*** �0.52*** (1.14***)y 291.7% 13.7% �66.3%

Vehicle characteristics
Making a turn (1 if truck was making a turn, 0 otherwise) 0.47*** 0.58*** �110.6% �20.9% 100.5%
Roadway characteristics
Non-interstate (1 if crash occurred on non-interstate highway, 0

otherwise)
0.31*** 0.32*** �112.9% �9.7% 46.7%

Speed limit (1 if speed limit P 65 mph, 0 otherwise) 0.27*** 0.24*** (0.42***)y �81.6% �7.3% 35.4%
Environmental characteristics
Flat terrain (1 if crash occurred on flat terrain, 0 otherwise) 0.22*** 0.38*** �158.0% �11.2% 53.9%
Temporal characteristics
Weekday (1 if crash occurred on a weekday, 0 otherwise) �0.19** �0.33*** 90.5% 10.6% �50.9%
Constant 2.10*** 3.95***

Threshold 1, l1 2.42*** 4.30***

Log-likelihood at zero, LLð0Þ �993.17 �993.17
Log-likelihood at convergence, LLðbÞ �818.27 �770.35
Chi-square 349.8 445.6
Pseudo R-square 0.18 0.22
AIC 1,666.5 1,582.7
BIC 1,742.6 1,689.1
Number of observations, N 1,173 1,173

*** Significant at the 99% confidence level.
** Significant at the 95% confidence level.
* Significant at the 90% confidence level.

y The value in parenthesis is the standard deviation of the random parameter distribution.
� Average direct pseudo-elasticities are calculated from the random-parameters model.
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LRFull ¼ �2½LLFullðbFullÞ � LLSingleðbSingleÞ � LLMultiðbMultiÞ� ð6Þ
where LLFullðbFullÞ is the log-likelihood at convergence of the full model (�770.35), LLSingleðbSingleÞ is the log-likelihood at con-

vergence of the single-vehicle crash model (�388.34) and LLMultiðbMultiÞ is the log-likelihood at convergence of the multi-
vehicle crash model (�386.90) using the same variables included in the full model. Note that log-likelihood values are from
random-parameters model. The test statistic (LRFull = 9.78) is v2 distributed, with degrees of freedom equal to the summation
of the number of estimated parameters in both single- and multi-vehicle crash models minus the number of estimated
parameters in the full model. The null hypothesis here is that there is no difference in the parameter values between the full
model and separate models. The test statistic with 21 degrees of freedom resulted in a value less than the critical value at the
90% confidence level (v2 = 29.62), indicating that the single- and multi-vehicle models do not have statistically different
parameters.

Model comparison

Following the methodology articulated in Washington et al. (2011), a likelihood ratio test was performed to compare the
fixed- and random-parameters ordered probit models. The null hypothesis of the test is that the fixed-parameters model is
statistically equivalent to the random-parameters model. The likelihood ratio is as follows (Washington et al., 2011).
LR ¼ �2½LLFixedðbFixedÞ � LLRandomðbRandomÞ� ð7Þ
where LLFixedðbFixedÞ = log-likelihood at convergence of the fixed-parameters model (�818.27) and LLRandomðbRandomÞ = log-
likelihood at convergence of the random-parameters model (�770.35). The chi-square test statistic (LR = 95.84) with six
degrees of freedom resulted in a value greater than the critical value at the 99.99% confidence level (v2 = 27.86). The null
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hypothesis is rejected, which indicates the validity of the random-parameters model over the corresponding fixed-
parameters model. Additionally, to compare the goodness-of-fit of the models, Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Pseudo R-square (R2) were computed. Given the both models fit on the same dataset, the model
with lower AIC and BIC, and higher R2 is considered to outperform the other one. Table 2 suggests that the random-
parameters model has lower AIC (1582.7 vs. 1666.5), lower BIC (1689.1 vs. 1742.6), and higher R2 (0.18 vs. 0.22). Hence,
the random-parameters model has a better fit than the fixed-parameters model.

Occupant characteristics

Considering the specific estimation results presented in Table 2, older occupant (age 60 and over) was found as a signif-
icant factor for crash injury severity. This parameter is random and normally distributed, with a mean 0.58 and a standard
deviation 2.00. Given these estimates, 38.6% of the observations have parameter values less than 0 and 61.4% greater than 0.
This implies that for more than half of the observations, older occupants were found to be involved in less severe injuries.
The elasticities demonstrated a 101.1% decrease in major injuries, 21.2% decrease in minor injuries, and 101.8% increase in no
injuries for the older occupants. The occupant age variable being significant with random parameter suggests that there is
unobserved heterogeneity in HAZMAT involved crashes, may be due to the underreporting of the level of injury severity by
highway patrol officers (Duncan et al., 1998). Islam and Hernandez (2013a) found that occupants aged between 55 and 65
were more likely to be severely injured. Uddin and Huynh (2017) found that truck occupants of the above age range had
higher probability of minor injuries under daylight, and had lower probability of major and minor injuries under dark-
lighted conditions in rural locations.

Male occupant variable was found to be random and normally distributed with a mean �0.06 and a standard deviation
0.49. The estimates suggest that for 54.9% of the observations the parameter values were less than 0. This suggests that
slightly more than half of the observations resulted in more severe injuries to male occupants and slightly less than half
resulted in less severe injuries. This finding is contrary to that of Abdel-Aty (2003) and Islam and Hernandez (2013a), and
it is due to the fact that male occupants had higher proportion of major injuries than female in the sample (9.4% for male
and 1.4% for female). The likelihood of major injuries for male occupants was found to increase by 18.0% and the likelihood
of no injuries was found to decrease by 8.5%.

The occupant being the driver was found to result in more severe injuries. In fact, being the driver had the highest effect
on the crash severity outcomes. The probability of major injury for a driver was increased by 908.7%, the probability of minor
injury was increased by 59.9%, and the probability of no injury was decreased by 297.1%. Zhu and Srinivasan (2011) reported
that older, African-American, and taller truck drivers are vulnerable to more severe injury crashes. Chen and Chen (2011)
found that the likelihood of older truck drivers being involved in a incapacitating/fatal injury increases with single-
vehicle crashes and decreases with multi-vehicle crashes.

Crash characteristics

Rear-end collisions were less likely to result in severe injuries to occupants. The probability of major injuries was found to
decrease by 141.6% and the probability of no injuries was found to increase by 84.4% in rear-end collisions. This finding is
intuitive since rear-end collisions mostly cause vehicle structural damages. Also, this finding is consistent with the study by
Uddin and Huynh (2017); they found that rear-end collisions decreased the probability of minor injuries under urban dark-
unlighted conditions and possible/no injuries under urban dark-lighted conditions.

When a truck hits an object, occupants were less likely to sustain severe injuries. Specifically, the occupants were asso-
ciated with a decrease in the risk of major injuries by 100.1% and an increase in the risk of no injuries by 84.7%. Khorashadi
et al. (2005) reported that truck hitting an object decreased the probability of severe injuries for drivers by 34%. Islam et al.
(2014) found that the chance of major injuries for drivers in both rural single- and rural multi-vehicle crashes increased
when a truck hit an object. Uddin and Huynh (2017) found that hitting an object decreased the probability of minor injuries
for occupants under rural dark-lighted, urban daylight, and urban dark-lighted conditions.

The variable indicating crashes occurring in rural locations was found as significant with a random parameter that is nor-
mally distributed with a mean �0.53 and a standard deviation 1.90. This implies that 61.0% of the observations have param-
eter values less than 0 and 39% greater than 0. For more than half of the observations where crashes occurred in rural
locations occupants had more severe injuries. The crashes in rural locations were associated with higher likelihood of major
injuries (303.3%) and lower likelihood of no injuries (68.2%) for occupants compared to that of urban locations. One possible
explanation could be the fact that emergency response time is slower in rural areas. This finding is in line with the findings of
Chang and Mannering (1999) and Islam and Hernandez (2013b).

The findings from the analysis for lighting condition variables are intuitive. The elasticity results indicate that the prob-
ability of major injuries for occupants increased under both dark-unlighted (370.7%) and dark-lighted (291.7%) conditions.
Under dark conditions, roadway visibility is lower, which may increase the chance of collisions. These findings related to
lighting variable are consistent to that prior truck safety studies (Cerwick et al., 2014; Duncan et al., 1998; Islam and
Hernandez, 2013b; Khorashadi et al., 2005; Zhu and Srinivasan, 2011). The parameter for dark-unlighted condition was
found as random and normally distributed with mean �0.54 and standard deviation 1.65. Given these estimates, 62.8% of
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the observations under dark-unlighted conditions were found to be involved in more severe injuries and 37.2% in less severe
injuries to the occupants. Also, the parameter for dark-lighted condition was found as random and normally distributed with
a mean �0.52 and a standard deviation 1.14. This implies that 67.6% of the observations under dark-lighted conditions were
found to be involved in more severe injuries and 32.4% in less severe injuries to the occupants.

Vehicle characteristics

HAZMAT crashes, where a truck was making a turn, were found to be associated with decreased likelihood of major inju-
ries (110.6%) and increased likelihood of no injuries (100.5%) for occupants. One possible reason could be the fact that trucks
generally slow down while making a turn. Thus, the chance of high-impact collision reduces. Khorashadi et al. (2005)
reported that when a truck was making a turn the probability of fatal injuries for drivers decreased by 87.2%. Chang and
Mannering (1999) found that the probability of possible injuries for occupants increased during right turns, and the proba-
bility of property damage only and possible injuries decreased during left turns.

Roadway characteristics

For crashes occurring on non-interstate highways, the likelihood of major injuries decreased by 112.9% and the likelihood
of no injuries increased by 46.7% for the occupants. This may be because of lower traffic volume on non-interstate highways.
However, this finding is contrary to that of Zhu and Srinivasan (2011).

Higher speed limit (�65 mph) variable was found as random and normally distributed with a mean 0.24 and a standard
deviation 0.42. Given these estimates, 28.4% of the observations have parameter values less than 0 and 71.6% greater than 0.
This implies that majority of the observations had less severe injuries to the occupants when crashes occurred on highways
with higher speed limit. Specifically, the likelihood of major injuries for occupants decreased by 81.6% and the likelihood of
no injuries increased by 35.4%. One possible explanation could be that drivers are more cautious in high speed limit high-
ways, especially the drivers of HAZMAT trucks. This result is consistent with prior findings (Chang and Mannering, 1999;
Zhu and Srinivasan, 2011).

Environmental characteristics

Among environmental characteristics considered, only flat terrain variable was significant. It was found that HAZMAT
crashes occurring on flat terrain had lower probability of major injuries (158.0%) and higher probability of no injuries
(53.9%) to the occupants. This could be explained by high visibility on flat terrain, which in turn helps drivers to make last
second maneuvering (if necessary) and to avoid impending collisions.

Temporal characteristics

HAZMAT truck crashes occurring during weekdays were found to be more severe than weekend crashes. The likelihood of
major injuries for occupants increased by 90.5%, while the likelihood of no injuries decreased by 50.9%. One possible reason
could be the fact that roadways carry higher volumes of traffic during weekdays and consequently higher chance of trucks
being involved in crashes in general. This finding is in line with the finding of Islam and Hernandez (2013a).

Conclusions

This paper analyzed injury severity of crashes involving HAZMAT large trucks in the state of California through the devel-
opment of fixed- and random-parameters ordered probit models using crash data from 2005 to 2011. Three severity levels
based on the injury severity sustained by the occupants were defined: major injury, minor injury, and no injury. The random-
parameters model was developed to account for unobserved effects related to occupant, crash, vehicle, roadway, environ-
mental, and temporal factors not present in the data. The results showed a consistent pattern for the sign of the variables
in both the fixed- and random-parameters models. However, a likelihood ratio test suggested that the random-
parameters model is statistically superior than the fixed-parameters model.

The results of the analyses identified several risk factors at occupant, crash, vehicle, roadway, environmental, and tem-
poral levels that contribute to injury severity. The occupants being male, truck drivers, crashes occurring in rural locations,
under dark-unlighted, under dark-lighted conditions, and on weekdays were associated with increased probability of major
injuries; these findings can be used to develop policies to reduce risk of injuries from HAZMAT truck-involved crashes. In
contrast, the older occupants (age 60 and over), truck making a turn, rear-end collision, collision with an object, crashes
occurring on non-interstate highway, higher speed limit highway (�65 mph), and flat terrain were associated with
decreased probability of major injuries.

This study has several limitations which should be taken into account when applying the findings. The first is that the
crash data came from a single U.S. state. Second, the factors investigated were limited to those available in the HSIS database.
The findings would be more generalizable if the dataset had crashes from multiple states and could be linked to other data-
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bases. Lastly, the findings from this study cannot be used to make recommendations or develop policies specifically for
HAZMAT-designated routes.
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