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Abstract: According to Bureau of Transportation Statistics, the U.S. transportation system handled
14,329 million ton-miles of freight per day in 2020. Understanding the generation of these freight
shipments is crucial for transportation researchers, planners, and policymakers to design and plan
for a more efficient and connected freight transportation system. Traditionally, the freight generation
modeling has been based on Ordinary Least Square (OLS) regression, although more advanced
Machine Learning (ML) algorithms have been evaluated and proven to have excellent performance
in various transportation applications in recent years. Furthermore, one modeling approach applied
for one industry might not always be applicable for another as their freight generation logics can be
quite different. The objective of this study is to apply and evaluate alternative ML algorithms in the
estimation of freight generation for each of 45 industry types. Seven alternative ML algorithms, along
with the base OLS regression, were evaluated and compared. In addition, the study considered differ-
ent combinations of variables in both the original and logarithmic form as well as hyperparameters
of those ML algorithms in the model selection for each industry type. The results showed statistically
significant improvements in the root mean square error reduction by the alternative ML algorithms
over the OLS for over 80% of cases. The study suggests utilizing the alternative ML algorithms can
reduce the root mean square error by about 30%, depending on industry types.

Keywords: freight generation model; freight production; freight attraction; North American Industry
Classification System (NAICS); Commodity Flow Survey (CFS); machine learning algorithms

1. Introduction

Freight transportation is a critical link in the supply chain of goods. It connects
industry productions to demands and directly or indirectly affects national and regional
economic productivity and growth. Bureau of Transportation Statistics (BTS) indicates
that the U.S. transportation system handled 14,329 million ton-miles of freight per day in
2020 [1]. Understanding the generation of these freights, where they originate from and
terminate to, is crucial for freight transportation researchers, planners, and policymakers
to design and plan for a more efficient and connected freight transportation system. Note
that the term “freight generation”, commonly used in the transportation field, includes
shipments both originated by (production) and terminated to (attraction) industry in this
study.

In view of freight data needs, BTS initiated the quinquennial Commodity Flow Survey
(CFS) since 1993 [2]. It is the only publicly available national survey in the U.S. on goods
movement which provides national, state, and metropolitan-level data on freight shipments
by industry sectors. The CFS data offers a comprehensive overview of the national freight
generation and movement. Due to cost and other constraints, the CFS is conducted every
five years and published data at state/metropolitan levels. Although CFS filled a large gap
in freight data, the transportation communities have been expressing their desires for more
timely data with granular geography for over a decade. To this end, freight generation
models are frequently adopted by transportation analysts to estimate the quantity or value
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of goods generated from and/or attracted to a region. These models enable disaggregating
the existing CFS data to local levels (e.g., county) and provide freight estimations for
intermediate years between the CFS surveys.

This study utilized tonnage and value from the most recently released 2017 CFS
data for 45 industry sectors as dependent variables and proposed industry-specific freight
generation models based on industry-related factors such as number of establishments,
annual payroll, number of employments, and receipt total. Traditionally, freight generation
modeling approaches are based on Ordinary Least Square (OLS) regression [3–5]. While
more complex Machine Learning (ML) algorithms have been evaluated and proved to have
excellent performance in various transportation applications in recent years; based on the
best of the authors’ knowledge, there has not been any research done on adopting alterna-
tive ML models in freight generation estimation. The objective of this study is, therefore, to
apply and evaluate the alternative ML algorithms in freight generation estimation.

Seven alternative ML algorithms, along with OLS regression, were evaluated in this
study. This research explored various combinations of variables in both original and
logarithmic forms, algorithms, and corresponding hyperparameters. Then, the study
proposed a selection method to choose the best combination by industry to generate
industry-specific models. The selection method considers those alternative algorithms,
other than OLS regression (the baseline approach), only when the improvement of model
performance is statistically significant. If not significant, the OLS is selected as it has the
advantage in terms of interpretability, compared to more complex ML algorithms.

The paper is structured in seven sections. The next section presents a literature review
on general approaches and data sources used for freight generation modeling, as well as the
application of ML models. Section 3. (Data Sources) summarizes the data used in this study.
The ML algorithms adopted in this study and the baseline OSL regression are elaborated in
the section after. The following section describes the data processing and model selection
procedure. Then, Section 6. (Model Results) discusses the model performance results
and summarizes the final model selection for each industry. The final section concludes
this study.

2. Literature Review

There exist two major classes of freight generation models, in terms of dependent
variables. The classes are freight generation (FG) and freight trip generation (FTG). The
FG models often focus on the weight or value of freight (e.g., tons/year) whereas the FTG
models focus on the number of freight vehicle trips (e.g., truck trips/year). FG models
are a better representation of the regional- or national-level economic activities given
the capability to reflect the intensity of production and consumption of goods. Table 1
summarizes past studies where FG is modeled as weight. Due to the scope of the current
study, studies on FTG are not included in the review.

As for the scope of the analysis, all the FG models presented in Table 1 were estimated
at a regional level. Some models were also estimated at industry- and commodity-specific
levels. This aggregate modeling has the advantage of predicting FG from regional economic
and other related characteristics. However, this approach may result in certain aggregation
biases in the estimated FG data. The alternative is to model using disaggregated data. The
estimation of these disaggregated models, however, requires establishment-level freight
generation data. These data are often collected through surveys for the freight generating
facilities in the study region.

Several explanatory variables were used for FG modeling in past studies. These
include employment, establishment size, annual payroll by industry sector, gross floor area,
population/population density, port influence, and land use. Among all these, employment
is invariably considered as the most preferred explanatory variable. Establishment size
and payroll are often considered along with employment. Several studies performed FG
modeling on fixed variables without exploring the impact of variable selections on the
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model output or fit. Furthermore, none of the studies considered receipts total (an important
economic characteristic at industry/establishment level) as an explanatory variable.

Additionally, the majority of the studies utilized the OLS regression to model FG
due to its ability to explain the relationship between freight activity and explanatory
variables, as coefficients of regressions directly represent impacts to model estimates (refer
to Section 6.4). The other methods used in the literature are Spatial Regression, Multiple
Classification Analysis, One-way ANOVA, and Spatial Autoregressive Model. All these
statistical approaches make strict assumptions about the data. Furthermore, a number of
the existing models estimated models where explanatory variables affect FG in a linear
form which may not always be true [6]. Advanced ML algorithms are often a promising
alternative to statistical approaches. The advantage of ML algorithms is that they learn
to represent complex relationships in a data-driven manner and are often non-parametric.
The usefulness of ML algorithms has already been demonstrated for different areas in
transportation research. For instance, ML algorithms are particularly used in modeling
travel mode choice [7], freight mode choice [8], crash severity prediction [9], predicting
the performance of asphalt mixture [10], and freight demand forecasting [11]. Hagenauer
and Helbich [7] conducted a comparative analysis of seven machine learning classifiers for
modeling travel mode choice. Uddin et al. [8] explored eight machine learning classifiers,
using 2012 Commodity Flow Survey data, for modeling freight mode choice. Iranitalab
and Khattak [9] compared four statistical and machine learning methods for prediction
of crash severity. Rahman et al. [10] explored machine learning methods to predict two
metrics of the performance of the asphalt mixture. Lastly, Salais-Fierro and Martínez [11]
applied machine learning methods for demand forecasting in freight transportation.

Table 1. Summary of Studies on the Modeling of Freight Generation.

Study Study Area Data Source Scope of
Analysis

Variables
Considered Methods Used Model

Performance

Chin and
Hwang [12]

United States Commodity Flow
Survey (CFS)

CFS Area and
Industry Sector

Employment and
Establishment Size OLS Regression Except for four

models, R2 > 0.70

Key Findings: With additional modeling efforts, the developed models could be enhanced to allow transportation analysts to
assess regional economic impacts.

Holguin-Veras
et al. [3]

Colombia
Freight Origin-
Destination
Survey

Region (made up
of municipality
and 4 countries)

Gross Domestic
Product (GDP),
Existence of Port

OLS Regression Adjusted R2:
[0.86, 0.96]

Key Findings: On average $1600 of GDP is needed to produce a ton of freight.

Novak
et al. [13]

United States CFS and
TranSearch CFS Area

Population, Number
of Employees, Port,
Highway Length

OLS and Spatial
Regression R2: [0.33, 0.63]

Key Findings: It is recommended to avoid the overuse and addition of highly correlated explanatory variables such as
employment and population even when this improves R2; spatial regression model is the preferred specification for freight
generation at the national level.

Bagighni [14]
United States Freight Analysis

Framework (FAF)
FAF Zone and
Commodity

Population, Median
Age, Income, Number
of Jobs by Industry
Sector

OLS Regression Adjusted R2:
[0.54, 0.81]

Key Findings: It is possible to develop good freight volume estimating models for individual commodities using regression
analysis; however, the level of success for each commodity model varies.

Oliveira-Neto
et al. [5]

United States CFS State and
Industry

Annual Payroll by
Industry Sector OLS Regression R2: [0.40, 0.98]

Key Findings: Payroll can explain a significant portion of the freight production at the state level for the U.S.
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Table 1. Cont.

Study Study Area Data Source Scope of
Analysis

Variables
Considered Methods Used Model

Performance

Lim et al. [4]
California FAF

FAF Zone and
Commodity
Group

Number of
Employees,
Population, Farmland
Acres, Crop and
Livestock Sales, Net
Annual Electrical
Generation using
Coal

OLS Regression R2: [0.21, 0.83]

Key Findings: Models without constant terms have a better fit than models with constant; model fit is dependent on the
commodity grouping and the choice of explanatory variables.

Ha and
Combes [15]

France French Shipper
Survey ECHO Establishment

Employment,
Economic Activity,
Relations with
Economic Agents,
Production and
Logistics
Characteristics

One-way
ANOVA and OLS
Regression

R2: [0.16, 0.45]

Key Findings: The number of employees and the economic sector were identified as very important explanatory variables.

Mommens
et al. [16]

Belgium

Freight volume
data compiled
from multiple
sources

Traffic Analysis
Zone and
Commodity

Number of
Employees,
Establishment Size,
Gross Floor Space,
Population Density

OLS Regression R2: [0.31, 0.69]

Key Findings: It is doubtful that the addition of new explanatory variables will improve the model fit and consequently
improvements in model accuracy.

National
Academies of
Sciences,
Engineering,
and Medicine
[17]

United States CFS Industry Number of
Employees

OLS Regression
(linear and
non-linear
specifications)
and Multiple
Classification
Analysis

Adjusted R2:
[0.01, 0.73]

Key Findings: The use of the CFS in combination with complementary datasets provides an efficient way to estimate freight
generation (FG) models for the entire nation at various levels of geography; non-linear models typically provide the best
representation of FG patterns.

Krisztin [6]

European
NUTS-2 regions Eurostat Country

Regional Share of
Employment,
Regional Share of
Employment in
Agriculture and
Manufacturing,
Length of Road
Network, and
Distance to the
Closest Seaport

Spatial
Autoregressive
Model

Adjusted R2:
[0.39, 0.87]

Key Findings: There are significant non-linearities related to employment rates in manufacturing and infrastructure capabilities
in the study regions.

Compared to the referenced existing studies, the major contribution of this paper
includes the followings:

• Evaluation of seven commonly used ML algorithms (i.e., Lasso, Decision Tree, Ran-
dom Forest, Gradient Boosting, Support Vector, Gaussian Process, and Multi-layer
Perceptron regressions), along with Ordinary Least Square (OLS) regression, with
statistical tests on model performance

• Comprehensive scope of industry types—covered 45 North American Industry Classi-
fication System (NAICS) codes

• Inclusion of receipts total as an exploratory variable
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• Industry-specific model selection—extensive model selection process considering
model approach (ML algorithms), use of logarithm, and full combination of variable
selection for each industry type

3. Data Sources
3.1. Dependent Variables—Freight Generation Data (Tonnage and Value)

The term “freight generation” is used differently in various studies. To clarify the
FG modeling used in our study, “freight generation” is defined as the tonnage or value of
freight shipments generated in a region associated with their business activities by each
industry type. Note that our study does not estimate number of shipments or number of
truck trips, which are considered FTG. As discussed in Section 2, FG models, compared to
FTG, might better represent the regional- or national-level economic activities since they
reflect the intensity of production and consumption of goods.

In addition, the term “freight generation” directly indicates that the study covered the
estimation of shipments by both origins (freight production modeling) and destinations
(freight attraction modeling). In freight planning, the “freight generation” is a prior process
before the next step “freight distribution” (not covered by this study), which combines
estimated shipments by origins and destinations and produces estimates of each origin-
destination pair. The following two dependent variables are used for both the production
(by origins) and the attraction (by destinations) modeling in our study, based on the 2017
CFS data [2].

• tonnage: total weight (in thousand tons) of shipments originated from (terminated to)
a region by industry

• value: total value (in million dollars) of shipments originated from (terminated to) a
region by industry

Note that there are variations associated with the sampling and other reporting errors
that may have been incurred during the survey. Due to data confidentiality and data quality
standard, Census suppressed tonnage and/or value for certain records in the public release
of CFS data. Although there is another publicly available U.S. nationwide freight data, i.e.,
Freight Analysis Framework (FAF) [1], it was not considered in this study since the FAF
data does not provide industry type information. The descriptions of all the 45 NAICS
codes covered in this study are presented in Table A1.

3.2. Independent/Explanatory Variables—Economic/Industry Data

To develop reasonable FG models, many explanatory variables could be obtained from
public/private data sources or derived using additional data processing. In this study, we
used the indicators that represent economy or business activities, which are commonly used
in the FG modeling studies. In addition, to potentially apply the FG models to disaggregate
the CFS data, we need the input data at more granular level of geography (e.g., county).
With such considerations, the study utilized the two county-level industry data products
by Census, i.e., Economic Census (EC) [18] and County Business Pattern (CBP) data [19].

The CBP data, which is a part of the EC data program, are published annually between
the five-year interval EC data releases. The main difference is that the EC tables provide
additional business/economy information such as the receipt total (sales, revenue, or
shipments) by industry, whereas the CBP provides number of employees, number of
establishments, and annual payroll. All the in-scope industries in the CBP, as the name
indicate, are provided at county level, whereas a few industries in the EC are provided at
only state or selected geography level. As the study is to evaluate the FG modeling effort
in terms of tonnage and value, only the industry types that were covered in the 2017 CFS
data were considered in the EC and CBP tables as well. Among the NAICSs covered in
our study, only two industry types, i.e., NAICS 212 (mining except oil and gas) and NAICS
551114 (corporate, subsidiary, and regional managing offices), do not have the receipt total at
county level and therefore the variable receipt total was not included for the NAICS codes
in our model selection process.
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Like the 2017 CFS data, there is suppressed information in the CBP and EC tables
as well. The imputation process is described in Section 5 (Data Processing and Model
Selection). The following is a list of explanatory variables used in our study:

• 2017 CBP: number of establishments (ESTAB), number of employments (EMP), and
annual payroll (PAYANN)

• 2017 EC: receipt total (RCPTOT) that is the total value of sales, revenue, or shipments

3.3. Shipments by Destinations (Freight Attraction)

The aforementioned explanatory and dependent variables are applied the same way
for modeling both freight production (shipments by origins) and freight attraction (ship-
ments by destinations), except for one additional step required for the freight attraction
modeling. That is to derive origin-industry-specific input variables in respect to destina-
tions, since the original CBP and EC data are provided by origin industries. The authors
utilized the mapping of industry-to-industry share by the U.S. Bureau of Economic Analysis
(BEA)’s “Make and Use” tables, following the same procedure as applied by Oliveira-Neto
et al. [5]. The below equation represents the industry-to-industry mapping for deriving
input variables for each industry’s freight attraction model:

X′di = ∑
j

ωijXdj (1)

where,
X′di is the derived input variables for destination d by a linear combination of the

shares of origin (make) industry i to destination (use) industry j;
ωij is the shares of origin industry i to destination industry j, obtained by the BEA’s

make and use table.

3.4. Descriptive Statistics of Input Data

Table 2 shows the descriptive statistics of the input data for shipments by origins
(freight production modeling), after combining the EC and CBP data with the 2017 CFS
data. For each variable, the mean and standard deviation is provided. For tonnage and
value, the number of data point (sample size) is also presented as they are different by
NAICS. This is because the suppressed tonnage and value in the 2017 CFS data were
excluded from this study. As a result, the number of sample size (N) is smaller than
132 (number of the CFS areas) for most of NAICSs. There are suppressed information in
the EC/CBP data as well, but the suppressed information in the EC and CBP data were
imputed at county level before merging with the 2017 CFS data. More detailed description
of data processing is provided in Section 5 (Data Processing and Model Selection).

Similarly, Table 3 shows the descriptive statistics of the input data for shipments by
destinations (freight attraction modeling). Note that the number of sample size (N) in
Table 3 is 132 (number of the CFS areas) for all NAICSs. This reflects that commodity
shipments for each industry could be limited for certain origin areas but can be shipped
to any destination zones. Note that the NAICS codes that were not included in the BEA
Make and Use table were excluded in this study as the information is required to derive
input variables for the freight attraction modeling (estimating shipments by destinations,
refer to Section 3.3. (Shipments by Destinations (Freight Attraction)). The excluded NAICS
codes for shipments by destinations are NAICS 4233, 4235, 4237, 4239, 4243, 4245, 4246,
4248, 4249, and 45431.
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Table 2. Descriptive Statistics of the Input Data for Shipments by Origins.

NAICS

Tonnage
(Thousand Tons)

Value
(Million $)

Number of
Establishments

(Count)

Number of
Employments

(Count)

Annual Payroll
(Million $)

Receipt Total
(Million $)

N Mean Std. 1 N Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

212 119 23,570 34,993 118 710 1308 34 35 1127 1741 76 128 N/A 2 N/A
311 123 4865 6957 127 6255 7447 199 241 11,466 12,584 507 579 4392 5726
312 107 1296 2083 111 1384 2948 62 110 1628 2689 80 160 666 1339
313 67 89 184 101 284 629 11 28 577 1604 24 64 121 393
314 79 54 195 116 214 656 35 46 687 1604 25 66 114 521
315 43 9 26 98 140 478 42 226 686 3092 18 84 65 364
316 34 16 30 76 57 81 6 12 146 352 5 12 12 36
321 113 1939 2876 125 889 1142 103 108 3047 3593 121 142 610 810
322 112 1411 1827 113 1665 1969 26 34 2103 2873 124 177 686 1076
323 108 164 252 126 675 838 182 221 3469 4140 155 204 535 751
324 98 12,687 24,707 112 4623 11,030 10 13 655 1363 68 154 2067 6675
325 122 5694 11,200 127 5741 9853 93 117 5618 7089 439 636 4296 9013
326 120 497 616 129 1869 2205 86 105 5456 6696 260 316 1391 1868
327 106 6675 6988 129 993 931 103 85 2897 2594 149 138 730 753
331 103 1590 2752 112 1915 2512 27 37 2346 3460 149 239 1011 1881
332 114 899 1284 130 2700 3016 402 463 10,917 12,494 558 663 2423 2860
333 108 308 471 125 2959 3377 169 200 7815 8438 488 550 2268 2774
334 79 31 46 118 2660 4972 89 160 6052 10,593 521 1029 1811 3814
335 94 160 222 115 1098 1256 36 57 2138 2938 135 208 503 881
336 97 1069 2324 112 8093 13,983 81 104 11,616 16,517 749 1144 4736 10,549
337 115 122 178 126 610 889 101 124 2729 4096 113 172 424 785
339 100 66 81 124 1274 1743 203 270 4250 5928 234 386 952 1652

4231 104 691 1783 124 5349 11,377 173 237 3175 4426 169 311 2287 6471
4232 96 192 340 118 788 1430 97 203 1357 2644 78 155 487 1150
4233 96 1703 2095 129 1319 1544 125 128 1912 2082 108 128 759 1063
4234 87 241 564 119 4183 8084 255 375 4756 7634 418 877 3123 7721
4235 117 1058 1669 124 1573 2458 67 101 1124 1714 70 117 737 2215
4236 107 275 527 125 4325 8658 208 349 3931 7293 377 986 2829 6764
4237 113 209 246 132 1300 1518 143 157 1974 2280 121 151 747 1021
4238 95 563 951 128 3879 4449 434 466 6081 6513 388 458 2589 3641
4239 99 2240 4068 125 1786 3464 234 495 2590 4369 136 245 440 1947
4241 103 362 587 121 1062 1819 67 115 1115 1951 64 119 472 1230
4242 86 196 782 112 6299 12,078 69 158 2188 5438 254 807 2054 6738
4243 86 102 382 103 1360 4409 116 513 1615 6106 98 403 935 4719
4244 125 3060 4220 131 6580 9345 257 455 6383 8787 338 484 3781 7630
4245 82 10,628 18,113 89 2314 3524 45 93 531 1074 28 54 786 1789
4246 110 1230 2332 122 1506 2792 84 113 1131 1667 83 147 646 1848
4247 116 11,937 22,794 122 6847 12,943 36 36 664 932 55 140 2986 24,341
4248 127 526 579 129 1262 1820 28 49 1376 1887 86 148 600 1519
4249 89 2214 4538 129 2410 3124 209 302 2759 3388 134 167 235 763
4541 99 207 433 123 4314 8864 307 538 4291 6698 194 353 3129 7868
4931 119 2235 2416 121 9207 11,193 120 144 6848 9242 297 398 208 462
5111 77 23 24 93 146 211 107 129 2661 4461 164 413 508 1794

45431 120 433 722 124 272 393 50 68 535 859 24 43 148 344
551114 56 362 475 69 1324 1891 375 400 26,406 34,602 2823 4615 N/A N/A

1 Std.: Standard Deviation; 2 N/A: Not Available.

Table 3. Descriptive Statistics of the Input Data for Shipments by Destinations.

NAICS
Tonnage

(Thousand Tons)
Value

(Million $)

Number of
Establishments

(Count)

Number of
Employments

(Count)

Annual Payroll
(Million $)

Receipt Total
(Million $)

N Mean Std. 1 N Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

212 132 21,951 22,729 132 702 919 33 34 1090 1682 73 124 44 137
311 132 4744 5189 132 6041 7218 198 242 11,175 12,308 498 569 4328 5619
312 132 1188 1597 132 1212 2504 65 108 1899 2793 98 167 844 1459
313 132 49 100 132 224 394 12 27 580 1525 25 62 130 375
314 132 40 120 132 195 448 40 51 942 1617 39 68 181 486
315 132 4 6 132 106 198 37 208 606 2848 16 78 58 335
316 132 5 20 132 38 79 6 12 176 344 6 12 30 49
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Table 3. Cont.

NAICS
Tonnage

(Thousand Tons)
Value

(Million $)

Number of
Establishments

(Count)

Number of
Employments

(Count)

Annual Payroll
(Million $)

Receipt Total
(Million $)

N Mean Std. 1 N Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

321 132 1708 1824 132 847 732 102 108 2998 3577 119 142 602 802
322 132 1236 1454 132 1454 1716 26 35 1995 2839 117 174 647 1053
323 132 154 237 132 650 819 171 207 3293 3913 149 195 515 722
324 132 10,438 21,857 132 4185 9811 10 13 620 1304 63 147 1915 6321
325 132 5412 9044 132 5645 8116 88 111 5305 6698 413 600 4106 8648
326 132 499 560 132 1826 2076 86 107 5338 6592 260 317 1433 1910
327 132 6484 6447 132 982 985 102 85 2899 2597 149 139 733 756
331 132 1326 1959 132 1721 2138 29 40 2279 3435 144 235 958 1823
332 132 864 1006 132 2684 2707 394 453 10,749 12,276 550 653 2401 2830
333 132 320 468 132 2845 2969 168 201 7697 8426 480 548 2249 2783
334 132 41 55 132 2437 4239 88 158 5905 10,349 504 1002 1788 3735
335 132 124 149 132 981 1059 37 58 2139 2967 135 210 518 897
336 132 858 1941 132 7276 12,126 80 104 11,087 16,183 715 1119 4506 10,261
337 132 115 113 132 585 623 102 125 2739 4075 114 172 435 785
339 132 58 73 132 1261 1574 214 284 4431 6095 250 404 1100 1844

4231 132 684 1202 132 5086 6652 165 228 3042 4260 162 299 2189 6221
4232 132 189 260 132 729 844 1626 2244 25,377 33,348 1758 2784 13,137 24,316
4234 132 208 308 132 3942 5207 229 338 4274 6882 376 790 2803 6957
4236 132 289 399 132 4168 5741 201 337 3800 7050 364 953 2735 6539
4238 132 702 1129 132 3791 3683 388 417 5444 5831 347 410 2317 3259
4241 132 364 574 132 992 1350 852 1571 16,783 25,333 1074 1892 11,693 32,900
4242 132 162 294 132 5964 7160 64 149 2025 5121 235 759 1900 6339
4244 132 3028 3764 132 6537 8251 248 440 6164 8486 326 468 3651 7368
4247 132 10,905 21,166 132 6467 12,033 32 33 596 850 49 127 2677 22,080
4541 132 185 232 132 4095 5009 353 559 4773 6974 216 368 3238 7905
4931 132 2083 1899 132 8955 8550 114 137 6466 8827 281 380 198 443
5111 132 31 64 132 181 354 79 96 1990 3311 124 307 383 1331

551114 132 540 1235 132 1125 1548 361 395 25,336 34,027 2696 4504 N/A 2 N/A

1 Std.: Standard Deviation; 2 N/A: Not Available.

4. Machine Learning Algorithms

Seven commonly used machine learning algorithms (i.e., Lasso, Decision Tree, Random
Forest, Gradient Boosting, Support Vector, Gaussian Process, and Multi-layer Perceptron
regressions), along with Ordinary Least Square (OLS) regression, were considered for the
comparison.

4.1. Ordinary Least Squares Regression (OLS, the Baseline)

As discussed previously, the OLS regression is the most often used method in the
FG models. Therefore, OLS method was used as the baseline to be compared with other
ML algorithms. As the OLS has advantage of simplicity and interpretability over other
ML algorithms, the OLS is still suggested as the final model if the model performance
improvements by the ML algorithms are not found to be statistically significant.

Yoi = αi + βiXoi + εoi (2)

where,
Yoi is the tonnage/value of freight shipments originated from origin o and industry i;
Xoi is the set of explanatory variables for origin o and industry i;
αi and βi are the parameter estimates of linear regression model for industry i.

4.2. Least Absolute Shrinkage and Selection Operator (Lasso)

Least absolute shrinkage and selection operator (Lasso) is a regression technique
that performs both variable selection and regularization, by “shrinking” coefficients of
regression models, to enhance the estimation accuracy while providing the interpretability
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of typical linear regression models. The Lasso shrinks coefficients by adding the penalty
term to the residual sum of squares (RSS) that is to be minimized in the OLS.

Minimize [RSS + λ∑|βi| ] (3)

The model flexibility decreases as λ increases, leading to smaller variance but larger
bias. This is especially useful to mitigate overfitting, which is frequently observed for small
sample size data. In the Lasso module of the Python scikit-learn library—version 0.24.2 [20],
used in this study, the λ can be controlled with the hyperparameter named “alpha”. The
Lasso method evaluated for the FG model in our study used the “alpha” ranging from 0 to
0.02 with an increment of 0.002.

4.3. Decision Tree Regression (DTR)

The Decision Tree is one of the popular non-parametric supervised learning methods
used for classification and regression, depending on whether the dependent variable is
categorical or continuous (like tonnage/value in this study). The main advantages of the
Decision Tree regression (DTR) are: (1) the splits of nodes are unbiased; (2) each node
contains a single model fit, relatively easier to interpret the model result; and (3) there are
less limitations for applying the residuals, including general least squares.

Using the DecisionTreeRegressor module in the Python scikit-learn library [20], the
following hyperparameter settings were evaluated and the hyperparameter setting with
the lowest Root Mean Square Error (RMSE) was used for each model selection by DTR.

• Maximum depth of the tree (max_depth): [1, 2, 3, 4, 5]
• Complexity parameter used for the minimal cost-complexity pruning (ccp_alpha):

[0, 0.002, . . . , 0.018, 0.02]

4.4. Random Forest Regression (RFR)

The Random Forest is an ensemble learning method for supervised learning, designed
to improve model accuracy by randomly constructing multiple decision trees, rather than
just one tree. Random Forest regression (RFR) is simply an ensemble of multiple random
regression trees for the continuous dependent variables. The Random Forest is known
to produce highly accurate estimation results for large sample sizes. Once the model is
trained, the prediction process is relatively efficient, significantly faster than the training
speed.

Using the RandomForestRegressor module in the Python scikit-learn library [20], the
following hyperparameter settings were evaluated and the hyperparameter setting with
the lowest RMSE was used for each model selection by RFR.

• Maximum depth of the tree (max_depth): [1, 2, 3, 4, 5]
• Complexity parameter used for the minimal cost-complexity pruning (ccp_alpha):

[0, 0.002, . . . , 0.018, 0.02]
• Number of trees in the forest (n_estimators): 10

4.5. Gradient Boosting Regression (GBR)

Gradient Boosting is another ensemble learning technique that forms multiple decision
trees sequentially accounting for weak predictions of the previous decision trees. Specifi-
cally, the next trees are trained on the weighted data where more weights are assigned for
the observations that were more difficult to estimate or classify in the previous iteration.
If the sample size is sufficient for the training, the Gradient Boosting can outperform the
Random Forest.

Using the GradientBoostingRegressor module in the Python scikit-learn library [20], the
following hyperparameter settings were evaluated and the hyperparameter setting with
the lowest RMSE was used for each model selection by GBR.

• Maximum depth of the tree (max_depth): [1, 2, 3, 4, 5]
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• Complexity parameter used for the minimal cost-complexity pruning (ccp_alpha):
[0, 0.002, . . . , 0.018, 0.02]

• Learning rate to control the contribution of each tree (learning_rate): [0.01, 0.1, 1]
• Number of the estimators (trees) (n_estimators): 10

4.6. Support Vector Regression (SVR)

Support Vector Machines (SVMs), which are more often used in classification, refer
to a set of supervised learning for classification and regression, using a subset of training
data as for the decision points, also called “support vectors”. Support Vector regression
(SVR) is generally advantageous for high dimensional data, possibly effective even when
number of dimensions is greater than the sample size. The choice of kernel functions and
regularization parameters can be critical to avoid over-fitting in the SVR.

Using the SVR module in the Python scikit-learn library [20], the following hyperpa-
rameter settings were evaluated and the hyperparameter setting with the lowest RMSE
was used for each model selection by SVR.

• Margin of tolerance where no penalty is given to errors (epsilon): [0, 0.002, . . . , 0.018,
0.02]

• Regularization parameter (C): [0.1, 0.3, . . . , 1.9, 2.1]
• Kernel distribution type to be used in the algorithm (kernel): [Linear, Polynomial,

Gaussian (RBF), Sigmoid]

4.7. Gaussian Process Regression (GPR)

Gaussian Process regression (GPR) is an extension of linear regression, where “Gaus-
sian Process” represents finite linear combinations of random variables that are normally
distributed. During the model fitting of GPR, the hyperparameters of the kernel are opti-
mized to maximize the log-marginal-likelihood based on the passed optimizer. One of the
main advantages by Gaussian Process is that the estimates can be provided in probabilistic
forms where their empirical confidence interval can also be obtained.

Using the GaussianProcessRegressor module in the Python scikit-learn library [20], the
following hyperparameter settings were evaluated and the hyperparameter setting with
the lowest RMSE was used for each model selection by GPR.

• Constant value added to the diagonal of the kernel matrix (alpha): [1× 10−11, 1× 10−10,
1× 10−9]

• Kernel specifying the covariance function of the model (kernel):
• Combined two kernels, Dot-Product kernel and White kernel
• For the Dot-Product kernel (DotProduct), the parameter sigma to control the inhomo-

geneity of the kernel: [0.5, 1.0, 1.5]
• For the White kernel (WhiteKernel), the parameter noise_level to control the noise level

of the kernel: [0.5, 1.0, 1.5]

4.8. Multi-Layer Perceptron Regression (MLP)

Multi-layer Perceptron (MLP) is a class of feedforward artificial neural network, where
the “multi-layer” refers to consisting of at least three layers: input layer, hidden layer,
and output layer. The MLP utilizes backpropagation for training, and different activation
functions can be used for the training of hidden layers. The MLP is known to require
relatively large data size for the training.

Using the MLPRegressor module in the Python scikit-learn library [20], the following
hyperparameter settings were evaluated and the hyperparameter setting with the lowest
RMSE was used for each model selection by MLP.

• Hidden layer size and number of neurons in each hidden layer (hidden_layer_sizes)
• Number of hidden layers: [1, 2, 3]
• Number of neurons in each hidden layer: [3, 4, 5]
• L2 penalty parameter (alpha): [0.00001, 0.0001, 0.001]
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• Activation function for the hidden layer (activation): [Identity, Logistic, Rectified Linear
Unit (ReLU)]

5. Data Processing and Model Selection
5.1. Imputation of Missing Data (for CBP/EC)

For the records by origin (for all the 132 CFS areas) and industry (for the NAICSs
covered in this study) in the published 2017 CFS tables, about 19% of tonnage and 8%
of value are suppressed due to the sampling variability. These suppressed tonnage and
value were excluded from evaluation in our study because different imputing methods
could affect the modeling results inadvertently, especially for evaluating different modeling
approaches.

The county level CBP and EC data also have suppressed information for the number
of employments, annual payroll, number of establishments, and receipt total. Unlike the
rest of the variables, the group for the range of number of employments are provided in the
CBP data where the exact number of employments are suppressed. Therefore, in the first
step, we imputed the number of employments by using the mid-point of the employment
size range (EMPFLAG).

After the number of employments is imputed, the suppressed values for the rest
of variables were imputed based on the ratio of the attribute value over the number of
employments for known values. This imputation process was conducted at the county
level data for each NAICS code. Once the imputation is completed, county-level data were
aggregated to the CFS area-level to be merged with the 2017 CFS data.

5.2. Data Transformation

The FG modeling may require transformation of the input data to improve the accuracy
since their relationships may not be linear as in the original units. In this study, we evaluated
the model performance either in the original input data units or log-transformed values.
The following equation indicates the case where both explanatory variables and dependent
variables are transformed with natural logarithm.

log(Yoi) = α′i + β′ilog (Xoi) + ε′oi (4)

Yoi = exp (α′i + ε′oi)·Xoi
β′ i (5)

For more comparable model selection evaluation, the final model results were con-
verted to the original units of tonnage and value if log-transformed.

5.3. Normalization

The normalization is the process of rescaling the input data to a similar range or
distribution across different attributes. In our study, this is an essential process to improve
the model stability and performance especially for more complex models, such as MLP.
The normalization could be also helpful to interpret the importance of variables based on
regression parameters that have different units if not normalized. In our study, a simple
min-max normalization was used, where the min value was set to be zero for all cases. As
such, the normalized value in our study is obtained simply by dividing the original value
with the max value of each attribute.

5.4. Variable Selection

There are many different techniques for the variable selection, such as forward, back-
ward, and stepwise selection. However, these techniques are heuristic approaches in that
they choose or change subset of possible variable selection based on the previous variable
selection result. Under our study, the number of explanatory variables is only four, except
for NAICSs 212 and 551114 (only three without the receipt total). Therefore, instead of
applying such variable selection techniques, this study evaluated all possible variable
combinations among the four (or three) independent variables. The maximum number of
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possible combinations is 15
(
= 24− 1

)
with four independent variables, excluding the one

case that none of independent variables are selected.

5.5. Optimization of Hyperparameters

For each modeling approach, different hyperparameter setting could yield substan-
tially different model performance results. Therefore, the authors attempt to test many
different hyperparameters discussed in Section 4 (Machine Learning Algorithms). Then,
the hyperparameter setting with the lowest RMSE among all tested settings was selected
for each model approach and variable selection. Note that not all possible hyperparameters,
such as minimum number of required samples at a leaf node in Decision Tree regression,
were tested in the study.

5.6. Model Performance—Error Measurements

Three metrics were used for the model performance evaluation in this study:

• Root Mean Square Error (RMSE): the square root of arithmetic mean of the squared
difference between the 2017 CFS tonnage/value and the estimated tonnage/value

• Mean Absolute Error (MAE): the arithmetic mean of the absolute difference between
the 2017 CFS tonnage/value and the estimated tonnage/value

• R-squared: the R-squared (or coefficient of determination) statistic between the 2017
CFS tonnage/value and the estimated tonnage/value

Both the RMSE and the MAE are commonly used to measure accuracy of continuous
variables (i.e., tonnage and value). The study used the RMSE as the primary metric
to determine the final model selection by NAICS, because the OLS regression (baseline
model) fits to minimize the sum of squared error. In other words, using the MAE as the
primary metric for the OLS could bias the final model selection toward preferring one of
the alternative ML models over the OLS.

All the three metrics were evaluated based on only the validation sets. Note that the
validation sets are based on K-fold cross validation where K is 4, with 25 times of repeats.
Therefore, there are 100 validation sets and associated performance metrics observed for
each model selection. The K-fold cross validation is useful especially when dealing with
small dataset (N ≤ 132 for each industry), since the data is split into K number of folds
making all parts of the data being equally used as part of the validation sets.

Furthermore, unadjusted R-squared was used, instead of adjusted R-squared which
is used as a correction to the unadjusted R-squared for the case with multiple predictors.
This is because the R-squared was obtained only based on the validation sets, not the
training set, where the model complexity is already accounted in the estimates of validation
sets. Finally, alternative models, other than OLS, are selected only when the reduction of
RMSE appears to be statistically significant by paired T-test and Wilcoxon statistics with
the p-value of 0.05.

6. Model Results

To better understand the model selection process, we present an example of model
selection process with the case of estimating tonnage of shipments by origins for NAICS
212. Then, the following sections will discuss the significance of model improvement and
summarize the final model for each industry.

6.1. Example of Model Selection—Tonnage of Shipments by Origins for NAICS 212

The model selection was considered with different aspects, i.e., variable selection,
log-transform, and ML algorithms, as well as the hyperparameter settings of each ML
algorithm. For an easier understanding of the model selection choices considered for
each NAICS, Table 4 presents an example of model selection with associated RMSEs for
estimating tonnage of shipments by origins for NAICS 212.
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Table 4. RMSE by Model Selection—Tonnage of Shipments by Origins for NAICS 212.

Variable Selection OLS 1 Lasso 2 DTR 3 RFR 4 GBR 5 SVR 6 GPR 7 MLP 8

EMP 26,911 30,419 32,947 32,672 30,163 28,093 26,983 45,787
PAYANN 29,914 32,346 32,898 32,687 27,125 26,705 29,997 51,983
ESTAB 27,221 28,141 32,898 29,658 29,481 27,508 27,100 43,834
EMP, PAYANN 28,814 30,419 32,877 30,184 28,469 27,328 30,583 41,621
EMP, ESTAB 27,775 30,419 32,898 30,345 31,922 25,341 28,378 50,355
PAYANN,
ESTAB 30,015 32,346 32,898 30,785 31,769 26,215 30,306 45,076

N
o

Lo
g-

Tr
an

sf
or

m

EMP, PAYANN,
ESTAB 29,708 30,419 36,093 31,680 31,605 26,755 31,384 48,811

Lo
g-

Tr
an

sf
or

m

EMP 25,608 25,742 29,348 28,221 30,282 27,645 25,436 86,158
PAYANN 26,083 26,181 30,701 28,383 30,350 28,650 25,952 40,286
ESTAB 29,122 29,248 29,318 28,726 30,826 27,478 28,980 36,600
EMP, PAYANN 25,989 26,102 29,515 28,123 30,254 28,563 25,833 98,109
EMP, ESTAB 25,733 25,841 30,217 28,278 30,344 27,092 26,363 45,223
PAYANN,
ESTAB 26,281 26,354 30,721 28,485 30,366 27,141 26,741 415,283

EMP, PAYANN,
ESTAB 26,134 26,219 30,054 28,304 30,300 27,092 26,679 33,675

1 OLS: Ordinary Least Squares Regression, 2 Lasso: Least Absolute Shrinkage and Selection Operator, 3 DTR:
Decision Tree Regression, 4 RFR: Random Forest Regression, 5 GBR: Gradient Boosting Regression, 6 SVR: Support
Vector Regression, 7 GPR: Gaussian Process Regression, 8 MLP: Multi-layer Perceptron.

As presented in Table 4, there is a total of 112 choices for the model selection of
NAICS 212: 2 choices for the log-transform, 2 choices for each variable (excluding the case
with no explanatory variable), and 8 different algorithms. In fact, there is no receipt total
information at county-level (available for only state level) from the EC table for the NAICS
212 and 551114, but all the other industry types in this study have the county-level receipt
total information. Therefore, the total number of possible model selections was 240 for
industries other than NAICS 212 and 551114.

In addition to the summarized model selection in Table 4, the different hyperparameter
settings were tested as well and then only the hyperparameter settings with the lowest RM-
SEs were presented in Table 4. For the NAICS 212 tonnage estimation, the SVR model with
number of employees and number of establishments was selected as the best alternative
model since it yielded the lowest RMSE among all the options.

Finally, the alternative ML algorithm was suggested as the final model only when the
reduction of RMSE over OLS is statistically significant with paired T-test and Wilcoxon
statistics, as shown in Table 5.

6.2. Significance of Model Performance Improvement by Industry

Figure 1 shows the box plots of three model performance measurements based on
100 validation sets (K-fold cross validation where K is 4, with 25 times of repeats) for two
dependent variables: (a) tonnage of shipments by origins for NAICS 333 and (b) tonnage
of shipments by destinations for NAICS 337. The two cases were chosen intentionally to
provide two distinguishable examples of “with” versus “without” significant improvement
by the alternative ML algorithms. More specifically, the first example on the left side
(Figure 1a) shows the case where the alternative ML algorithm does improve the model
performance significantly, whereas none of the alternative ML models showed statistically
significant improvement over OLS for the example on the right side (Figure 1b).
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Table 5. Significance of Improvement by ML algorithms over OLS—Shipments by Origins.

NAICS Measure Alternative
RMSE t-Test Wilcoxon

OLS Alternative % Dif. Stat. p-Value Stat. p-Value

212
tons SVR 25,733 25,341 −1.5% 2.41 0.018 * 1780 0.01 *

value SVR 466 449 −3.8% 4.22 <0.0005 * 1566 0.001 *

311
tons GPR 4447 3963 −10.9% 11.31 <0.0005 * 131 <0.0005 *

value SVR 3020 2576 −14.7% 8.75 <0.0005 * 541 <0.0005 *

312
tons SVR 1667 1414 −15.2% 5.79 <0.0005 * 891 <0.0005 *

value SVR 1985 1894 −4.6% 5.84 <0.0005 * 894 <0.0005 *

313
tons OLS 79 - - - - - -

value SVR 239 226 −5.5% 4.80 <0.0005 * 1288 <0.0005 *

314
tons GPR 67 47 −29.1% 7.74 <0.0005 * 318 <0.0005 *

value SVR 158 144 −9.2% 2.78 0.006 * 1413 <0.0005 *

315
tons OLS 11 - - - - - -

value OLS 135 - - - - - -

316
tons GPR 26 26 −0.1% 1.20 0.232 1680 0.004 *

value SVR 68 66 −2.7% 3.57 0.001 * 1713 0.005 *

321
tons RFR 1946 1605 −17.5% 7.76 <0.0005 * 721 <0.0005 *

value SVR 384 311 −19.2% 11.19 <0.0005 * 247 <0.0005 *

322
tons SVR 1627 1492 −8.3% 12.85 <0.0005 * 161 <0.0005 *

value SVR 1167 1128 −3.4% 4.66 <0.0005 * 1148 <0.0005 *

323
tons SVR 179 150 −16.1% 11.12 <0.0005 * 183 <0.0005 *

value SVR 244 241 −1.4% 0.98 0.331 2186 0.244

324
tons SVR 11,290 10,730 −5.0% 3.86 <0.0005 * 1523 0.001 *

value SVR 5009 4389 −12.4% 6.45 <0.0005 * 506 <0.0005 *

325
tons GPR 8887 8783 −1.2% 8.09 <0.0005 * 298 <0.0005 *

value SVR 3592 3409 −5.1% 3.36 0.001 * 1945 0.046 *

326
tons SVR 319 279 −12.4% 10.15 <0.0005 * 390 <0.0005 *

value SVR 771 732 −5.1% 7.72 <0.0005 * 569 <0.0005 *

327
tons SVR 4768 4441 −6.9% 9.39 <0.0005 * 383 <0.0005 *

value SVR 361 355 −1.5% 1.51 0.133 1909 0.034 *

331
tons SVR 1525 1341 −12.1% 5.78 <0.0005 * 875 <0.0005 *

value SVR 966 926 −4.1% 7.04 <0.0005 * 727 <0.0005 *

332
tons SVR 925 909 −1.7% 1.07 0.286 2473 0.858

value SVR 627 622 −0.8% 1.69 0.095 1826 0.016 *

333
tons SVR 333 231 −30.6% 18.83 <0.0005 * 9 <0.0005 *

value SVR 1391 1186 −14.7% 14.25 <0.0005 * 51 <0.0005 *

334
tons SVR 42 37 −13.4% 14.22 <0.0005 * - <0.0005 *

value OLS 1085 - - - - - -

335
tons SVR 216 201 −6.8% 10.93 <0.0005 * 347 <0.0005 *

value OLS 730 - - - - - -

336
tons OLS 1662 - - - - - -

value SVR 4478 4437 −0.9% 1.16 0.249 1918 0.037 *

337
tons SVR 108 96 −11.2% 10.16 <0.0005 * 442 <0.0005 *

value OLS 225 - - - - - -

339
tons DTR 69 66 −4.3% 3.02 0.003 * 1687 0.004 *

value SVR 871 642 −26.3% 6.39 <0.0005 * 739 <0.0005 *

4231
tons OLS 876 - - - - - -

value OLS 4492 - - - - - -
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Table 5. Cont.

NAICS Measure Alternative
RMSE t-Test Wilcoxon

OLS Alternative % Dif. Stat. p-Value Stat. p-Value

4232
tons SVR 131 118 −9.9% 4.91 <0.0005 * 1418 <0.0005 *

value SVR 296 289 −2.4% 2.31 0.023 * 2432 0.749

4233
tons GBR 1295 1110 −14.3% 6.92 <0.0005 * 801 <0.0005 *

value SVR 446 419 −6.1% 5.63 <0.0005 * 963 <0.0005 *

4234
tons SVR 333 327 −1.7% 1.04 0.299 1968 0.055

value OLS 2746 - - - - - -

4235
tons SVR 969 878 −9.4% 3.47 0.001 * 1520 0.001 *

value OLS 1031 - - - - - -

4236
tons Lasso 372 371 −0.3% 1.54 0.126 2312 0.464

value SVR 3905 3686 −5.6% 4.04 <0.0005 * 1291 <0.0005 *

4237
tons OLS 118 - - - - - -

value SVR 543 513 −5.5% 6.31 <0.0005 * 924 <0.0005 *

4238
tons SVR 544 519 −4.7% 1.03 0.305 2048 0.101

value Lasso 1391 1382 −0.6% 0.92 0.36 2297 0.433

4239
tons Lasso 1494 1477 −1.1% 0.75 0.452 2356 0.561

value Lasso 793 743 −6.4% 1.72 0.089 2275 0.39

4241
tons OLS 382 - - - - - -

value OLS 843 - - - - - -

4242
tons SVR 574 568 −1.0% 3.33 0.001 * 1642 0.002 *

value OLS 8976 - - - - - -

4243
tons OLS 96 - - - - - -

value SVR 1175 845 −28.1% 5.69 <0.0005 * 971 <0.0005 *

4244
tons OLS 1154 - - - - - -

value OLS 1949 - - - - - -

4245
tons RFR 8771 8485 −3.3% 1.10 0.275 2367 0.587

value DTR 1809 1695 −6.3% 2.20 0.03 * 1700 0.005 *

4246
tons OLS 1525 - - - - - -

value OLS 1075 - - - - - -

4247
tons OLS 16,491 - - - - - -

value SVR 8490 8245 −2.9% 1.78 0.078 2171 0.224

4248
tons OLS 314 - - - - - -

value SVR 614 571 −6.9% 3.69 <0.0005 * 1753 0.008 *

4249
tons SVR 2608 2235 −14.3% 4.93 <0.0005 * 1515 0.001 *

value SVR 1685 1652 −2.0% 3.13 0.002 * 1575 0.001 *

4541
tons SVR 282 276 −2.2% 2.95 0.004 * 1661 0.003 *

value SVR 5102 4833 −5.3% 4.54 <0.0005 * 1367 <0.0005 *

45431
tons SVR 324 303 −6.6% 3.82 <0.0005 * 1520 0.001 *

value OLS 119 - - - - - -

4931
tons SVR 1494 1394 −6.7% 5.97 <0.0005 * 231 <0.0005 *

value SVR 5854 5505 −6.0% 3.98 <0.0005 * 794 <0.0005 *

5111
tons SVR 21 20 −6.3% 8.79 <0.0005 * 493 <0.0005 *

value SVR 183 182 −0.4% 0.94 0.352 1852 0.021 *

551114
tons RFR 493 480 −2.7% 2.39 0.019 * 1680 0.004 *

value DTR 1733 1653 −4.7% 3.80 <0.0005 * 1503 <0.0005 *

(* p-value < 0.05)

OLS: Ordinary Least Squares Regression, Lasso: Least Absolute Shrinkage and Selection Operator, DTR: Decision
Tree Regression, RFR: Random Forest Regression, GBR: Gradient Boosting Regression, SVR: Support Vector
Regression, GPR: Gaussian Process Regression, MLP: Multi-layer Perceptron.
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Figure 1. Box Plot with Model Performance: (a) Tonnage of Shipments by Origins for NAICS 333; 
(b) Tonnage of Shipments by Destinations for NAICS 337: the box extends from the first quartile 
(Q1) to the third quartile (Q3) and the whiskers extend at the farthest data points within the 

Figure 1. Box Plot with Model Performance: (a) Tonnage of Shipments by Origins for NAICS 333;
(b) Tonnage of Shipments by Destinations for NAICS 337: the box extends from the first quartile (Q1)
to the third quartile (Q3) and the whiskers extend at the farthest data points within the interval, no
more than 1.5× the interquartile (Q3-Q1) from the edges of the box; the rhombus marks (�) represent
the data points outside this range of the whiskers.

Since the RMSEs and MAEs may not be directly comparable across different NAICS,
the relative differences between RMSE and MAE were compared to the OLS. The relative
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RMSE/MAE is calculated as the difference of RMSE/MAE between each ML algorithm
and the OLS divided by the RMSE/MAE of OLS. The dotted line in Figure 1 represents the
arithmetic mean of each performance metric for the baseline algorithm, OLS.

For estimating tonnage of shipments by origins for NAICS 333 (Figure 1a), the SVR
algorithm clearly shows that the third quartiles (i.e., upper bound of the colored box) for
both RMSE and MAE are lower than the average RMSE/MAE by OLS. In addition, the
first quartiles (i.e., lower bound of the colored box) for the R-squared values are also higher
than the average R-squared by OLS method.

Comparably, for estimating tonnage of shipments by destinations for NAICS 337
(Figure 1b), all the ML algorithms have the third quartile of both RMSE and MAE higher
than the average RMSE/MAE by OLS. For the R-squared value of the NAICS 337 tonnage
estimation, the median (i.e., the mid-line inside of the box) of R-squared values by DTR,
RFR, GBR, and MLP are even lower than the average R-squared value by OLS.

In addition to the visual investigation of the box plots in Figure 1, statistical tests were
conducted to evaluate the significance of model performance improvements. Specifically, as
shown in Tables 5 and 6, two statistical tests, paired t-test and Wilcoxon, for the difference
of RMSE between the OLS and the alternative best ML method for each NAICS were
evaluated with a significance level of p-value 0.05. The alternative method was suggested
as the final model only when both of the test statistics show significant improvements
of RMSE, as compared to the RMSE by OLS. Note that no alternative ML methods are
provided in Tables 5 and 6, where OLS performed better than all the seven alternative ML
methods. Overall, both t-test and Wilcoxon statistics yield fairly consistent conclusions in
terms of which industry types were improved significantly over the OLS by applying the
alternative ML method.

Table 6. Significance of Improvement by ML algorithms over OLS—Shipments by Destinations.

NAICS Measure Alternative
RMSE t-Test Wilcoxon

OLS Alternative %Dif. Stat. p-Value Stat. p-Value

212
tons RFR 18,452 17,962 −2.7% 2.67 0.009 * 1795 0.012 *

value SVR 770 756 −1.8% 5.20 <0.0005 * 1042 <0.0005 *

311
tons GPR 2083 2078 −0.3% 0.54 0.59 2095 0.139

value SVR 3537 3482 −1.6% 1.87 0.065 1843 0.019 *

312
tons SVR 1077 1050 −2.6% 4.86 <0.0005 * 1038 <0.0005 *

value SVR 1827 1796 −1.7% 4.08 <0.0005 * 1538 0.001 *

313
tons GPR 73 73 −0.3% 0.47 0.638 1643 0.002 *

value SVR 261 254 −2.9% 4.28 <0.0005 * 1332 <0.0005 *

314
tons GPR 47 43 −7.6% 6.17 <0.0005 * 776 <0.0005 *

value GPR 121 120 −0.2% 2.13 0.036 * 2036 0.093

315
tons GPR 4 4 −3.8% 3.82 <0.0005 * 1428 <0.0005 *

value GPR 106 91 −13.8% 7.13 <0.0005 * 728 <0.0005 *

316
tons MLP 15 14 −6.6% 1.32 0.189 2513 0.967

value SVR 61 49 −20.2% 7.25 <0.0005 * 657 <0.0005 *

321
tons SVR 1154 961 −16.8% 18.37 <0.0005 * 14 <0.0005 *

value RFR 443 419 −5.4% 4.67 <0.0005 * 1269 <0.0005 *

322
tons SVR 709 693 −2.2% 3.28 0.001 * 1883 0.027 *

value GPR 691 691 −0.1% 1.09 0.278 2263 0.368

323
tons GPR 135 133 −2.0% 5.03 <0.0005 * 852 <0.0005 *

value SVR 253 244 −3.6% 1.58 0.118 2243 0.332

324
tons GPR 10,031 10,017 −0.1% 1.38 0.17 2305 0.449

value GPR 4476 3775 −15.7% 11.84 <0.0005 * 175 <0.0005 *
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Table 6. Cont.

NAICS Measure Alternative
RMSE t-Test Wilcoxon

OLS Alternative %Dif. Stat. p-Value Stat. p-Value

325
tons GPR 5442 5437 −0.1% 1.22 0.226 2194 0.255

value GPR 3960 3957 −0.1% 2.34 0.021 * 1952 0.049 *

326
tons SVR 260 257 −1.0% 1.82 0.072 2016 0.08

value SVR 868 864 −0.4% 0.81 0.418 2321 0.483

327
tons DTR 4436 4119 −7.1% 4.22 <0.0005 * 1347 <0.0005 *

value SVR 364 355 −2.4% 4.55 <0.0005 * 1037 <0.0005 *

331
tons GPR 1276 1244 −2.5% 7.74 <0.0005 * 701 <0.0005 *

value GPR 1298 1270 −2.2% 7.75 <0.0005 * 701 <0.0005 *

332
tons SVR 692 615 −11.1% 5.62 <0.0005 * 989 <0.0005 *

value SVR 1150 1114 −3.1% 2.01 0.047 * 2323 0.487

333
tons SVR 353 284 −19.6% 9.52 <0.0005 * 159 <0.0005 *

value SVR 1801 1782 −1.0% 2.17 0.032 * 1860 0.022 *

334
tons GPR 43 42 −3.3% 6.20 <0.0005 * 889 <0.0005 *

value OLS 2181 - - - - - -

335
tons GBR 132 127 −3.6% 1.94 0.055 1910 0.034 *

value SVR 656 639 −2.6% 3.24 0.002 * 2418 0.713

336
tons GPR 1483 1049 −29.3% 6.61 <0.0005 * 1018 <0.0005 *

value SVR 5910 5813 −1.6% 0.87 0.387 2143 0.189

337
tons GPR 61 61 −0.3% 0.89 0.376 2508 0.953

value SVR 304 269 −11.6% 10.23 <0.0005 * 261 <0.0005 *

339
tons GPR 39 38 −2.4% 6.02 <0.0005 * 856 <0.0005 *

value RFR 853 717 −16.0% 7.52 <0.0005 * 696 <0.0005 *

4231
tons SVR 612 576 −5.9% 4.14 <0.0005 * 1496 <0.0005 *

value Lasso 2019 2018 0.0% 2.16 0.033 * 2233 0.315

4232
tons OLS 178 - - - - - -

value SVR 371 335 −9.8% 3.45 0.001 * 2323 0.487

4234
tons GPR 168 165 −1.6% 2.28 0.025 * 1476 <0.0005 *

value SVR 1765 1697 −3.9% 3.98 <0.0005 * 1463 <0.0005 *

4236
tons GPR 264 261 −1.4% 3.95 <0.0005 * 1536 0.001 *

value OLS 2458 - - - - - -

4238
tons SVR 861 849 −1.4% 2.34 0.021 * 1502 <0.0005 *

value SVR 1892 1817 −4.0% 4.53 <0.0005 * 1040 <0.0005 *

4241
tons GPR 311 306 −1.9% 2.84 0.005 * 1502 <0.0005 *

value GPR 580 560 −3.5% 6.63 <0.0005 * 646 <0.0005 *

4242
tons SVR 218 212 −3.1% 3.50 0.001 * 1819 0.015 *

value SVR 4406 3845 −12.7% 6.13 <0.0005 * 940 <0.0005 *

4244
tons GPR 1151 1056 −8.3% 7.66 <0.0005 * 513 <0.0005 *

value GPR 1737 1639 −5.6% 6.49 <0.0005 * 628 <0.0005 *

4247
tons GPR 15,045 14,784 −1.7% 2.26 0.026 * 1594 0.001 *

value GPR 7666 7344 −4.2% 4.15 <0.0005 * 1416 <0.0005 *

4541
tons SVR 131 121 −7.4% 5.39 <0.0005 * 1185 <0.0005 *

value SVR 1596 1552 −2.8% 2.11 0.037 * 2210 0.279

4931
tons GPR 1131 1014 −10.3% 6.12 <0.0005 * 863 <0.0005 *

value GPR 4358 3964 −9.0% 8.70 <0.0005 * 586 <0.0005 *
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Table 6. Cont.

NAICS Measure Alternative
RMSE t-Test Wilcoxon

OLS Alternative %Dif. Stat. p-Value Stat. p-Value

5111
tons GBR 43 40 −6.5% 1.98 0.051 2314 0.468

value GPR 204 201 −1.8% 4.63 <0.0005 * 1871 0.025 *

551114
tons RFR 1012 984 −2.8% 3.93 <0.0005 * 1302 <0.0005 *

value SVR 1194 1157 −3.1% 7.04 <0.0005 * 609 <0.0005 *

(* p-value < 0.05)

OLS: Ordinary Least Squares Regression, Lasso: Least Absolute Shrinkage and Selection Operator, DTR: Decision
Tree Regression, RFR: Random Forest Regression, GBR: Gradient Boosting Regression, SVR: Support Vector
Regression, GPR: Gaussian Process Regression, MLP: Multi-layer Perceptron.

As shown in Tables 5 and 6, about 57% of cases for estimating shipments by origins
show a reduction of RMSE that are statistically significant, while 67% of estimating ship-
ments by destinations show a statistically significant improvement. Overall, for the cases
where the alternative ML methods bring a statistically significant improvement, the RMSE
reduction is ranged from 0.1% to 30.6%.

6.3. Summary of Best Model by Industry

Table 7 summarizes the final model suggestion for each NAICS code, which was
determined based on the significance tests on Tables 5 and 6. For each NAICS code and
measurement, the final model algorithm along with its variable selection and use of log-
transformation is provided.

Table 7. Final Freight Generation Model Selection.

NAICS Measure

Shipments by Origins
(Freight Production)

Shipments by Destinations
(Freight Attraction)

Model Log ESTAB EMP PAYANN RCPTOT Model Log ESTAB EMP PAYANN RCPTOT

212
tons SVR No

√ √
RFR Yes

√ √

value SVR No
√ √ √

SVR Yes
√ √

311
tons GPR Yes

√ √ √
GPR No

√ √

value SVR Yes
√ √ √

SVR No
√ √ √ √

312
tons SVR No

√ √
SVR Yes

√

value SVR Yes
√ √ √ √

SVR Yes
√ √ √

313
tons OLS No

√
GPR Yes

√

value SVR No
√ √

SVR Yes
√

314
tons GPR No

√ √ √
GPR No

√ √

value SVR No
√ √ √

GPR No
√

315
tons OLS No

√
GPR Yes

√ √

value OLS No
√

GPR Yes
√ √ √ √

316
tons GPR Yes

√
MLP Yes

√ √

value SVR No
√ √

SVR No
√ √ √

321
tons RFR No

√
SVR Yes

√ √

value SVR Yes
√ √

RFR Yes
√ √

322
tons SVR Yes

√ √
SVR No

√ √

value SVR No
√ √ √ √

GPR No
√ √

323
tons SVR Yes

√ √
GPR Yes

√ √

value SVR Yes
√ √ √

SVR Yes
√ √

324
tons SVR No

√ √ √ √
GPR No

√

value SVR No
√ √ √ √

GPR No
√ √
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Table 7. Cont.

NAICS Measure

Shipments by Origins
(Freight Production)

Shipments by Destinations
(Freight Attraction)

Model Log ESTAB EMP PAYANN RCPTOT Model Log ESTAB EMP PAYANN RCPTOT

325
tons GPR Yes

√
GPR No

√

value SVR No
√ √

GPR No
√

326
tons SVR No

√ √ √
SVR No

√ √ √ √

value SVR No
√ √

SVR No
√ √ √

327
tons SVR No

√
DTR Yes

√ √

value SVR Yes
√ √

SVR No
√ √ √ √

331
tons SVR Yes

√ √ √
GPR Yes

√ √

value SVR No
√ √ √ √

GPR Yes
√ √ √

332
tons SVR No

√ √
SVR No

√ √

value SVR Yes
√

SVR No
√ √

333
tons SVR No

√ √ √
SVR No

√ √

value SVR No
√ √ √

SVR No
√ √

334
tons SVR No

√
GPR No

√ √ √

value OLS No
√

OLS No
√

335
tons SVR Yes

√ √ √
GBR Yes

√ √

value OLS No
√ √

SVR No
√

336
tons OLS Yes

√ √
GPR No

√ √ √

value SVR No
√ √ √ √

SVR No
√ √ √

337
tons SVR No

√ √ √
GPR Yes

√ √

value OLS No
√ √ √

SVR Yes
√ √ √

339
tons DTR Yes

√ √
GPR No

√ √

value SVR No
√ √ √

RFR Yes
√ √

4231
tons OLS Yes

√
SVR Yes

√ √ √ √

value OLS Yes
√ √

Lasso No
√ √

4232
tons SVR No

√ √ √
OLS Yes

√ √

value SVR No
√ √

SVR No
√ √

4233
tons GBR No

√ √ √
N/Avalue SVR No

√ √ √

4234
tons SVR Yes

√ √
GPR Yes

√ √ √

value OLS Yes
√ √

SVR No
√ √ √

4235
tons SVR No

√ √
N/Avalue OLS No

√

4236
tons Lasso Yes

√
GPR Yes

√ √

value SVR No
√ √ √ √

OLS Yes
√

4237
tons OLS Yes

√ √
N/Avalue SVR No

√ √ √

4238
tons SVR Yes

√ √
SVR Yes

√ √ √

value Lasso Yes
√

SVR Yes
√ √ √

4239
tons Lasso Yes

√ √
N/Avalue Lasso No

√ √

4241
tons OLS Yes

√
GPR Yes

√ √

value OLS Yes
√ √

GPR Yes
√ √

4242
tons SVR No

√
SVR Yes

√ √

value OLS Yes
√ √

SVR Yes
√ √ √

4243
tons OLS No

√ √
N/Avalue SVR No

√ √

4244
tons OLS No

√
GPR Yes

√ √

value OLS No
√ √

GPR Yes
√ √

4245
tons RFR Yes

√ √
N/Avalue DTR No

√ √

4246
tons OLS Yes

√
N/Avalue OLS No

√
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Table 7. Cont.

NAICS Measure

Shipments by Origins
(Freight Production)

Shipments by Destinations
(Freight Attraction)

Model Log ESTAB EMP PAYANN RCPTOT Model Log ESTAB EMP PAYANN RCPTOT

4247
tons OLS Yes

√
GPR Yes

√ √

value SVR Yes
√ √

GPR Yes
√ √

4248
tons OLS No

√
N/Avalue SVR No

√ √ √

4249
tons SVR Yes

√ √ √ √
N/Avalue SVR Yes

√ √

4541
tons SVR Yes

√ √
SVR No

√ √

value SVR Yes
√ √ √

SVR No
√ √ √

4931
tons SVR Yes

√
GPR No

√ √

value SVR Yes
√

GPR No
√ √

5111
tons SVR Yes

√ √
GBR Yes

√

value SVR Yes
√ √

GPR Yes
√ √ √

45431
tons SVR No

√ √
N/Avalue OLS No

√

551114
tons RFR Yes

√
RFR Yes

√

value DTR Yes
√

SVR Yes
√ √

(
√

: the variable is included in the final model)

OLS: Ordinary Least Squares Regression, Lasso: Least Absolute Shrinkage and Selection Operator, DTR: Decision
Tree Regression, RFR: Random Forest Regression, GBR: Gradient Boosting Regression, SVR: Support Vector
Regression, GPR: Gaussian Process Regression, MLP: Multi-layer Perceptron.

Overall, as shown in Table 7, the SVR was selected as the best model for 52 NAICS
tonnage/value cases (58%) for the estimation of shipments by origins (freight generation).
For the estimation of shipments by destinations (freight attraction), both the SVR and GPR
were selected as the best model for 29 cases (41%) each.

The OLS, selected only when none of the seven alternative ML algorithms showed
the significant reduction in RMSE, was selected for 23 cases (26%) for the estimation of
shipments by origins (freight generation) and for only 3 cases (4%) for the estimation of
shipments by destinations (freight attraction). The MLP, which can be arguably considered
as the most complex model among the eight models, was selected for only one case for
estimating tonnage of shipments by destinations for NAICS 316.

In terms of the variable selection, the number of employee (EMP) was included most,
54 cases (60%), for estimating shipments by origins (freight generation). For the estimation
of shipments by destinations (freight attraction), the number of establishment (ESTAB) was
included most, 48 cases (69%), in the final model selection. In addition, the results show
that the log-transform would improve the overall model performance for 41 cases (46%) in
the estimation of shipments by origins and for 39 cases (56%) in the estimation of shipments
by destinations. In addition, the receipt total (RCPTOT), which was not considered in
any of the referenced study, was included in 49% of the final models. Note that this is
only a summary of how many times each variable is selected for all the 45 NAICS codes.
As discussed in Sections 5.4 and 5.6, the variable selection was determined by RMSE of
validation sets, considering all possible combinations.

6.4. Discussions in Model Interpretability

Oftentimes, a regression-based modeling approach can be explained with explicit
equational forms to represent the relationship between the dependent variable and the
independent variables. The following two equations, by OLS and Lasso, show the example
of final model for estimating values of shipments by origins for NAICS 4239. Note that the
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estimated coefficient for the number of employee variable (EMP) is smaller in the Lasso
regression (1.071) than the same coefficient estimate in the OLS regression (1.096).

OLS Regression : ̂Value4238 = exp(−0.058)·EMP4238
1.096 (6)

Lasso : ̂Value4238 = exp(−0.111)·EMP4238
1.071 (7)

This straightforward interpretability is one of the clear advantages for utilizing simple
regression-based modeling approaches, such as OLS and Lasso. However, one can choose
more complex models with higher model performance if the model performance (the
focus of this study) is more important for their applications. In addition, such complex
models could still provide insights of which factors are affecting more on the tonnage and
value of shipments by exploring the variable importance. For example, Figure 2 shows the
variable importance for the Support Vector Regression (SVR) model that estimates value of
shipments by origins for NAICS 322. The variable importance was calculated by permu-
tation feature imputation technique, where we measured the decreased R-squared value
by randomly shuffling a single feature value. In this case, the annual payroll (PAYANN)
appears to be impacting the most to the model estimates.

Sustainability 2022, 14, x FOR PEER REVIEW 22 of 26 
 

In terms of the variable selection, the number of employee (EMP) was included most, 
54 cases (60%), for estimating shipments by origins (freight generation). For the estimation 
of shipments by destinations (freight attraction), the number of establishment (ESTAB) 
was included most, 48 cases (69%), in the final model selection. In addition, the results 
show that the log-transform would improve the overall model performance for 41 cases 
(46%) in the estimation of shipments by origins and for 39 cases (56%) in the estimation of 
shipments by destinations. In addition, the receipt total (RCPTOT), which was not consid-
ered in any of the referenced study, was included in 49% of the final models. Note that 
this is only a summary of how many times each variable is selected for all the 45 NAICS 
codes. As discussed in Sections 5.4 and 5.6, the variable selection was determined by 
RMSE of validation sets, considering all possible combinations. 

6.4. Discussions in Model Interpretability 
Oftentimes, a regression-based modeling approach can be explained with explicit 

equational forms to represent the relationship between the dependent variable and the 
independent variables. The following two equations, by OLS and Lasso, show the exam-
ple of final model for estimating values of shipments by origins for NAICS 4239. Note that 
the estimated coefficient for the number of employee variable (EMP) is smaller in the 
Lasso regression (1.071) than the same coefficient estimate in the OLS regression (1.096). 
OLS Regression: 𝑉𝑎𝑙𝑢𝑒ସଶଷ଼෣ = exp (−0.058) ∙ 𝐸𝑀𝑃ସଶଷ଼ଵ.଴ଽ଺ (6) 

Lasso: 𝑉𝑎𝑙𝑢𝑒ସଶଷ଼෣ = exp (−0.111) ∙ 𝐸𝑀𝑃ସଶଷ଼ଵ.଴଻ଵ (7) 

This straightforward interpretability is one of the clear advantages for utilizing sim-
ple regression-based modeling approaches, such as OLS and Lasso. However, one can 
choose more complex models with higher model performance if the model performance 
(the focus of this study) is more important for their applications. In addition, such complex 
models could still provide insights of which factors are affecting more on the tonnage and 
value of shipments by exploring the variable importance. For example, Figure 2 shows the 
variable importance for the Support Vector Regression (SVR) model that estimates value 
of shipments by origins for NAICS 322. The variable importance was calculated by per-
mutation feature imputation technique, where we measured the decreased R-squared 
value by randomly shuffling a single feature value. In this case, the annual payroll 
(PAYANN) appears to be impacting the most to the model estimates. 

 
Figure 2. Example of Variable Importance in SVR—Value of Shipments by Origins for NAICS 322. 

7. Conclusions 
This study explored eight models, i.e., Ordinary Least Square (OLS) regression, 

Lasso, Decision Tree, Random Forest, Gradient Boosting, Support Vector, Gaussian Pro-
cess, and Multi-layer Perceptron regressions, applied for the FG models by industry type 

Figure 2. Example of Variable Importance in SVR—Value of Shipments by Origins for NAICS 322.

7. Conclusions

This study explored eight models, i.e., Ordinary Least Square (OLS) regression, Lasso,
Decision Tree, Random Forest, Gradient Boosting, Support Vector, Gaussian Process, and
Multi-layer Perceptron regressions, applied for the FG models by industry type (NAICS
code). The seven alternative ML algorithms, which have been commonly used for regres-
sion but not often in FG modeling, were evaluated whether the model performance im-
provement is significant over the OLS. Overall, the Support Vector regression was selected
most as the best model approach for the estimation of shipments by origins, while both the
Support Vector regression and the Gaussian Process regression were equally selected most
as the best model approach for the estimation of shipments by destinations. Combining
all the cases of shipments by origins and destinations, the RMSE reductions (compared to
OLS) for 134 cases (84%) are, ranged from 0.1% to 30.6%, statistically significant with both
paired t-test and Wilcoxon statistics.

The following summarizes the key contributions of this study:

• Built a framework to conduct the industry-specific model selection, i.e., the variation
selection, log-transform, and algorithm.

• Evaluated the significance of model improvements when using the alternative ML
algorithms over the OLS for the FG modeling.

• Suggested the use of OLS regression for certain NAICSs if the RMSE reductions by
the alternative ML algorithms are not statistically significant.
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• Considered all possible variable combinations from the four variables in the CBP and
EC data tables.

• Covered all the NAICS codes from the 2017 CFS data and estimated tonnage/value of
freight shipments by both origins (generation) and destinations (attraction).

Although the study focused on model performance in applying ML algorithms for the
FG models, simplicity and interpretability of model approaches could be more important
depending on their applications. This is one of the main reasons why alternative ML algo-
rithm is being selected over OLS only when the improvement is “statistically significant”.
Note that most of complex ML models may not be provided with explicit equational forms,
but their variable importance can be still obtained, as discussed in Section 6.4. (Discussions
in Model Interpretability).

The scope of this study is limited to estimating tonnage and value of the freight
shipments by industry type (NAICS codes). The proposed model selection results could be
quite different when different dependent variables, such as truck volume and number of
shipments, are to be estimated.

Furthermore, there can be more variables, such as population, GDP, access to ports,
network access/length by mode, land use, etc., to be considered to improve model per-
formance depending on industry types and data availability. Additionally, note that not
all hyperparameters were evaluated for each ML algorithm, meaning that there may be
potential further improvements with hyperparameter settings not considered in this study.
The authors expect that more complex algorithms, such as Random Forest, Gradient Boost-
ing, and Multi-layer Perceptron regressions, are more likely to outperform the OLS with
larger size of training data (e.g., the data at the establishment level or more granular level
of geography). With all, the authors believe that the future research in FG modeling can be
focused on the following areas:

• Applying the proposed framework with use case of disaggregating freight data into
more granular level of geography (e.g., county-level freight data).

• Using other external/private data sources to reveal the relationship between economy
activity and associated freight shipments at individual business level.

• Expanding the model framework to forecasting future freight demand by indus-
try type.
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Appendix A

Table A1 summarizes the description of 45 North American Industry Classification
System (NAICS) codes used in this study.
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Table A1. Description of 45 NAICS Codes Used in the Study.

NAICS Code Description

212 Mining (except oil and gas)
311 Food manufacturing
312 Beverage and tobacco product manufacturing
313 Textile mills
314 Textile product mills
315 Apparel manufacturing
316 Leather and allied product manufacturing
321 Wood product manufacturing
322 Paper manufacturing
323 Printing and related support activities
324 Petroleum and coal products manufacturing
325 Chemical manufacturing
326 Plastics and rubber products manufacturing
327 Nonmetallic mineral product manufacturing
331 Primary metal manufacturing
332 Fabricated metal product manufacturing
333 Machinery manufacturing
334 Computer and electronic product manufacturing
335 Electrical equipment, appliance, and component manufacturing
336 Transportation equipment manufacturing
337 Furniture and related product manufacturing
339 Miscellaneous manufacturing

4231 Motor vehicle and motor vehicle parts and supplies merchant wholesalers
4232 Furniture and home furnishing merchant wholesalers
4233 Lumber and other construction materials merchant wholesalers
4234 Professional and commercial equipment and supplies merchant wholesalers
4235 Metal and mineral (except petroleum) merchant wholesalers
4236 Household appliances and electrical and electronic goods merchant wholesalers
4237 Hardware, plumbing and heating equipment and supplies merchant wholesalers
4238 Machinery, equipment, and supplies merchant wholesalers
4239 Miscellaneous durable goods merchant wholesalers
4241 Paper and paper product merchant wholesalers
4242 Drugs and druggists’ sundries merchant wholesalers
4243 Apparel, piece goods, and notions merchant wholesalers
4244 Grocery and related product merchant wholesalers
4245 Farm product raw material merchant wholesalers
4246 Chemical and allied products merchant wholesalers
4247 Petroleum and petroleum products merchant wholesalers
4248 Beer, wine, and distilled alcoholic beverage merchant wholesalers
4249 Miscellaneous nondurable goods merchant wholesalers
4541 Electronic shopping and mail-order houses

45431 Fuel dealers
4931 Warehousing and storage
5111 Newspaper, periodical, book, and directory publishers

551114 Corporate, subsidiary, and regional managing offices
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